Criterion C: Development
Word Count: 614

Introduction

| programmed an application which is utilized to input, search for and organize information about
a user's miscellaneous tasks as an individual who works from home in collaboration with
multiple business partners. The Netbeans IDE and a Java OOP approach is used to make a
GUI interface for the user to most easily work with. The program works with a linked list as the
primary data structure, allowing the user to input and remove data dynamically.

Summary of Programming Techniques

List of Techniques:
- Flag Values (Such as "Not set yet")
- Nested Loops
- Encapsulation
- Multi Conditional if/else statements
- User defined objects made from an OOP "Task" template class
- Sorting - bubble sort to sort particular data based on different attributes
- GUl tabs
- Searching: Linear/sequential search
- Default table Model

Data Structure Used:
- Linked List

Summary of 'Task’ Class

In this class, initial variables were set, user objects were made, and encapsulation - .get
methods specifically - allowed the extendability of these variables into the Main GUI class.

1. Flag Values

private String
private String
private String
private String
private String
private String

taskName = "Not set yet";

taskLocation = "Not set yet";
taskUrgency = "Not set yet";
contactedGroupName = "Not set yet";
daysRemaining = "Not set yet";
prepTime = "Not set yet";

2. User Defined Objects from a Template Class; e.g. "Task"
3. Parameter Passing - local variables within the program accessed in sub-programmes without

the need for global variables.

4. Default Constructors

public Task(String taskName, String taskLocation, String taskUrgency, String contactedGroupName, String daysRemaining, String prepTime){

this.taskName = taskName;

this.taskLocation = taskLocation;

this.taskUrgency = taskUrgency;

this.contactedGroupName = contactedGroupName;
this.daysRemaining = daysRemaining;

this.prepTime = prepTime;

5. Encapsulation: Using the accessor 'get' methods to retrieve attributes of private variables.

public String getTaskName (){
return taskName;

}

'SortAndSearch’ Class To Re-Organize Tasks

In this class, | created a bubble sort for daysRemaining, taskUrgency and prepTime in order to
allow the user to customize the display of their inputted data in the table.

6: Bubble Sort (Used similarly for daysRemaining and prepTime):
- irint n acts as an initial size of the loop which will reduce through n--.
- ii: 'boolean sorted = false;' assumes that the tasks are not sorted, and acts as the
condition for the sort to continue - 'while(!sorted)' — while not sorted.
- iii: for loop to iterate through the list for a designated number of iterations

public class SortAndSearch {

public void sortByUrgency(LinkedList<Task> tasksList){
int n = tasksList.size();
boolean sorted = false;
while(!sorted){
n-—;
sorted = true:;
for(int 1 = @; i < n; i++){
if(tasksList.get(i).getTaskUrgency().charAt(@) < tasksList.get(i+l).getTaskUrgency().charAt(®e)){

Task temp = tasksList.get(i);
tasksList.set(i, tasksList.get(i+1));
tasksList.set(i+1, temp);

sorted = false;

Summary of GUI/Main class programming

7: Linear/Sequential Search: Method for finding a key element (NameForSearchTF.getText()),
within a list, checking each element sequentially for a match.

- i: For loop used to iterate through the list for a designated number of iterations

- ii; if statement used to provide a condition in which the search is complete.

for(int i = @; i < tasksList.size(); i++){

if(tasksList.get(i).getTaskName().equals(NameForSearchTF.getText())){

LocationForSearchTF.setText(tasksList.get(i).getTaskLocation());
ContactForSearchTF.setText(tasksList.get(i).getContactName());
UrgencyForSearchTF.setText(tasksList.get(i).getTaskUrgency());
DaysRemainingForSearchTF.setText(tasksList.get(i).getDaysRemaining() + "");
PrepTimeForSearchTF.setText(tasksList.get(i).getPrepTime() + "");

8: Multi-conditional if/else statements: Use of 'if and 'else if'
- Jdropdown menu has different actions performed as the different options were selected.

Sort By: :Select... n

Select...

Days Remaining

Preparation Time

if(selectedIndex == 1){
//calling upon the urgency sort made in the SortAndSearch class
SortAndSearch urgencySort = new SortAndSearch();
urgencySort.sortByUrgency(tasksList);
for(int row = @; row < taskslList.size(); row++){
DataTableTF.setValueAt(tasksList.get(row).getTaskName(), row, 0);
DataTableTF.setValueAt(tasksList.get(row).getTaskLocation(), row, 1);
DataTableTF.setValueAt(tasksList.get(row).getContactName(), row, 2);
DataTableTF.setValueAt(tasksList.get(row).getTaskUrgency(), row, 3);
DataTableTF.setValueAt(tasksList.get(row).getDaysRemaining(), row, 4);
DataTableTF.setValueAt(tasksList.get(row).getPrepTime(), row, 5);
+
JOptionPane.showMessageDialog (this,"Tasks Organized By Urgency");
}else if(selectedIndex == 2){
SortAndSearch daysRemainingSort = new SortAndSearch();
daysRemainingSort.sortByDaysRemaining(tasksList);
for(int row = @; row < tasksList.size(); row++){
DataTableTF.setValueAt(tasksList.get(row).getTaskName(), row, 0);
DataTableTF.setValueAt(tasksList.get(row).getTaskLocation(), row, 1);
DataTableTF.setValueAt(tasksList.get(row).getContactName(), row, 2);
DataTableTF.setValueAt(tasksList.get(row).getTaskUrgency(), row, 3);
DataTableTF.setValueAt(tasksList.get(row).getDaysRemaining(), row, 4);
DataTableTF.setValueAt (tasksList.get(row).getPrepTime(), row, 5);
+
JOptionPane.showMessageDialog (this,"Tasks Organized By Days Remaining");
}else if(selectedIndex == 3){
SortAndSearch prepTimeSort = new SortAndSearch();
prepTimeSort.sortByPrepTime(tasksList);
for(int row = @; row < tasksList.size(); row++){
DataTableTF.setValueAt (tasksList.get(row).getTaskName(), row, 0);
DataTableTF.setValueAt(tasksList.get(row).getTaskLocation(), row, 1);
DataTableTF.setValueAt(tasksList.get(row).getContactName(), row, 2);
DataTableTF.setValueAt(tasksList.get(row).getTaskUrgency(), row, 3);
DataTableTF.setValueAt (tasksList.get(row).getDaysRemaining(), row, 4);
DataTableTF.setValueAt (tasksList.get(row).getPrepTime(), row, 5);
}
JOptionPane.showMessageDialog (this,"Tasks Organized By Urgency');

In this code, the multi-conditional if/else if statements check whether the option selected form
the JDropdown menu was 1/'Urgency', 2/'Days Remaining' or 3/'Preparation Time', in order to
determine which attribute was the one to be sorted.

Upon which, the given sort - urgencySort, daysRemainingSort or prepTimeSort is done through
the MainGUI_ClientDB class using a SortAndSearch called from the SortAndSearch class.

9: Use of a Default Table Model: an implementation of TableModel that allows actions such as
removing elements to be much easier done.
- Commands such as removeRow.

DefaultTableModel model = (DefaultTableModel) this.DataTableTF.getModel();
int[] rows = DataTableTF.getSelectedRows();
for(int i=0;i<rows.lengthj;i++){

model. removeRow(rows [i]-1);

}

tasksList = new LinkedList<Task>();
JOptionPane. showMessageDialog (this,"Removed Task Successfully");

- Forloop iterating rows.length times.
- model.removeRow simply removes the row(s) selected.

“How Do You Remove Selected Rows from a JTable?” Stack Overflow,
stackoverflow.com/questions/655325/how-do-you-remove-selected-rows-from-a-jtable.

10: Nested loops: used when working with two-dimensional tables holding columns and rows, to
iterate through the data in the table's rows and columns.
- Clears table by setting each index's text field to "" - empty String.
for (int i = @; i < DataTableTF.getRowCount(); i++) {
for(int j = @; j < DataTableTF.getColumnCount(); j++) {
DataTableTF.setValueAt("", i, j);
}

“Java - How to Clear Contents of a JTable ?” Stack Overflow,
stackoverflow.com/questions/3879610/how-to-clear-contents-of-a-jtable. Accessed 8
Apr. 2022.

11: Initialization of a new task using encapsulated accessor methods '.get'

Task task = new Task(TaskNameTF.getText(), TaskLocationTF.getText(), UrgencyTF.getText(),
KontactGroupTF.getText(), DaysRemainingTF.getText(), TimeToWorkTF.getText());

The .getText() call simply retrieves the text inputted by the user in the 6 text fields on the 'Enter
Tasks' page (See 'User Interface/GUI Work'), and adds them to the Linked List as a new task.

Data Structure Used:

| used a Linked List in this program due to the fact that data in this program must be able to
added and removed dynamically, thus prompting the use of a dynamic data structure such as a
Linked List. This allows the user full flexibility in terms of adding or removing data to their
preference. Furthermore, the speed of sorting and searching is not pivotal to the user, since this
program is mainly focused on keeping track of tasks, thus lessening the extent to which the
Linked List is disadvantageous in comparison to an Array List for example. The Linked List is
privately declared as it is only worked with in the MainGUI class, and therefore making it public
would be redundant.

private LinkedList<Task> tasksList = new LinkedList<Task>();

Structure Of The Program

Ll MainGUI_ClientDB.java
& SortAndSearch.java
& Task.java

This program uses 3 classes. The MainGUI_ClientDB class is the central feature of the
program, using OOP. It is dependent on and thus uses/collaborates with the other classes 'Task'
and 'SortAndSearch'. It also contains Java Swing tools allowing the design interface to function

properly.

OOP Elements

Relationships:
- Has a (aggregation)
- Uses a (dependency)
- MainGUI_ClientDB has a Task
- MainGUI_ClientDB uses a SortAndSearch

MainGUI_ClientDB uses a SortAndSearch method

SortAndSearch urgencySort = new SortAndSearch();

MainGUI_ClientCB has a Task

Task task = new Task(TaskNameTF.getText(), TaskLocationTF.getText(), UrgencyTF.getText(),
kontactGroupTF.getText (), DaysRemainingTF.getText(), TimeToWorkTF.getText());

The overall use of OOP allows the program to be more easily debugged, reused, managed, and
extended, as the classes and their relationships occur in a logical manner.

User Interface/GUI Work

J Enter Tasks T Full Tasks Table T Search Tasks]

Add New Task Details

Task Name: [|

Task Location: [|

Contacted Person/Group: | |

Is It Urgent? (Yes/No) | |

Days Remaining: | |

Preparation Time: [|

OK

Common features of the "Enter Tasks" page include textfield and buttons. Textfield is used to
input necessary information for the user to later work with. "OK" button allows the user to input
data, which can later be searched for in "Search Tasks" or displayed categorically in "Full Tasks
Table".

j Enter Tasks T Full Tasks Table T Search Tasks]

Add New Task Details

Task Name: [|

Task Location: [|

Contacted Person/Group: | |

Is It Urgent? (Yes/No) | |

Days Remaining: M [|
[) essage

Preparation Time: [|

@ Added Task Successfully

Simultaneously, the "OK" button refreshes "Enter Tasks" page, displaying a confirmation that the
task has been successfully added to the program. This is done through the Joptionpane code.

JOptionPane.shom‘é’essageﬂialog(this,"Added Task Successfully");

Enter Tasks | Full Tasks Table T Search Tasks]

Task Name | Task Locat... | Contacted ... | Urgency | Days Rema... | Preparatio... |

1 Refresh Table

[Remove Task Selected J

Clear Table
S CTT R

Select...
Urgency

Days Remaining

Preparation Time
All

L

"Full Tasks Table" page presents all the information needed by the client in a JTable, where the
user can access inputted data through the "Refresh Table" button. "Clear Table" button allows all
data to be removed at once to the client's liking, whereas the "Remove Task Selected" allows
them to remove individual tasks if they would rather do that. The ComboBox "Sort By:" allows
the user to customize how they want to organize the presentation on their tasks - by urgency,
days remaining or preparation time.

[Enter Tasks T Full Tasks Table T Search Tasks]

Search For A Task's Details

Task Name: | |

Task Location: | |

Contacted Person/Group: | |

Is It Urgent? (Yes/No) | |

Days Remaining: | |

Preparation Time: | |

OK Refresh

"Search Tasks" page allows the user to input their task name in order to view it's associated
attributes, called upon with the "OK" button.

