
Computer science teacher support material 	 1

Student work: Criterion CInternal assessment: Example 3

Criterion C - Development

The product is a Python program. It accepts map data about bordering regions from a text-file

written by the user. It automatically searches for a set of acceptable colors for the regions, using at

most 4 colors, so that bordering countries never share the same color.

-List of techniques –

- Parameter passing
- Random number generating
- Indexing from one list to another

- Map Diagrams -

Computer scientists define a data-structure called a "map diagram". This records only the
connections between regions, without recording long borders and large regions. This turns
complex regions into simple connecting lines, like these blue lines:

Source: BBCanada http://www.bbcanada.com/bb_canada_map.cfm accessed 18 Feb 2011
'Maps courtesy of BBCanada.com'

Each line connects two neighboring regions. Notice that 4 regions in the middle meet at one

point , but diagonal neighbors are NOT connected - e.g. #8 and #13 may have the same color.

Each region only needs a list of neighbors, and that list is only as long as the number of line

segments connecting to that region, like this:
YU --> BC,NW BC

--> YU,NW,AL

NW --> YU,NU,BC,AL,SA

Computer science teacher support material	 2

Student work: Criterion CInternal assessment: Example 3

 AL --> BC,NW,SA

SA --> AL,NW,MA

NU --> NW,MA,QU

MA --> SA,NU,ON

ON --> MA,QU

QU --> ON,NU,NF,NB

NF --> QU

NB --> QU,NS,PE

NS --> NB,PE PE

--> NB,NS

This requires minimal data entry. It's also easy because each entry only requires looking at a small part

of the map, examining just the neighbors around a region. The order of the entries doesn't matter, so

changes are easy. We''d like to just put a paper map into a scanner and let the computer figure out the

borders - but that requires image-recognition and AI techniques well beyond my programming skills.

- Input/Output -

The user types the border data with
a text editor (e.g. Notepad)
and saves it in a text-file.
This data is for the Canada map (above). The

first entry in each line specifies

a region, while the further entries in the

line are the neighbors of that region.

The program reads this file and stores

the data in a convenient format in a

dictionary.

→ See code for the readBorders method.

When a set of acceptable colors is found, the

regions and matching colors are printed in a

simple list as shown at the right.

→ See code for the listColors method.

Canada text-file Sample Output

YU,BC,NW BC,YU,NW,AL

NW,YU,NU,BC,AL,SA

AL,BC,NW,SA

SA,AL,NW,MA

NU,NW,MA,QU

MA,SA,NU,ON ON,MA,QU

QU,ON,NU,NF,NB NF,QU

NB,QU,NS,PE

NS,NB,PE

PE,NB,NS

Computer science teacher support material 	 3

Student work: Criterion CInternal assessment: Example 3

- Algorithms to Search for a Color Scheme -

There are two possible strategies for searching for creating the map using the acceptable colors:

1. Search for an algorithm that always produces a successful coloring scheme

- OR -

2. assign colors randomly and check whether the set of colors is acceptable (neighbors don't

have the same color) - if the colors don't work, then repeat with a different random set, until

a successful set is found (or quit after 1000 tries)

I was unable to find a straightforward algorithm that works for every map, therefore the solution

I developed uses a random guess and check strategy. → See code for the randomColors

method.

The program tries 1000 times to find a successful color scheme (it may be necessary to re-run

another 1000, several times, to succeed with a difficult map). For each color scheme, it must

check whether the colors are acceptable. → See source code for the checkColors method.

Computer science teacher support material	 4

Student work: Criterion CInternal assessment: Example 3

- Algorithm Overview -

• The program will provide automated searching for acceptable color combinations

Algorithm Purpose Comments

Input Border Data (#1) read text-file (created by client) and input

border

Randomly Choose Colors

(#2)

choose a random color for each country this must be automated, no user

input

Check Correctness of Colors

(#3)

check the colors assigned against all pairs of

neighboring countries

reject color set if one conflict is found

Repeat Search (#4) Repeat until success or failure

#1 - Inputting Borders Data from a File -

pseudocode for LoadingBordersData

 COUNT = 0

 Borders = empty list

 open data file

 repeat until end of file

 info = readLine (e.g. BC,YU,NW,AL)

 split info into array of Strings --> data[]

 append data[] to the Borders array

#2 - Generating Sets of Colors - This could be written using the pseudo code developed by Colin and Lise

pseudocode for RandomColors

 Colors = empty list

 for each REGION in the Borders list

 select a random COLOR 1..4 (or 1..3 if max-colors is 3)

 record the name of the REGION and the COLOR in the Colors list

#3 - Detecting Incorrect Colors -

pseudocode for Checking

 SUCCESS = True

Computer science teacher support material 	 5

Student work: Criterion CInternal assessment: Example 3

 for each REGION in the Borders list

 for each NEIGHBOR of the REGION

 look up REGION.COLOR in the Colors list

 look up NEIGHBOR.COLOR in the Colors list

 if REGION.COLOR == NEIGHBOR.COLOR

 SUCCESS = False

 return SUCCESS

#4 – Repeat search -

Show how program shows whether search has been successful or not.

- Data Structures -

The program uses several types of lists:

• tuples - standard names of 4 colors are stored in a tuple (which never

changes): colors = ("red","green","blue","yellow")

• arrays - the list of randomly chosen colors is stored in an array, indexed by integers :

def randomColors() :

for nin range(0,max) :

c = random.randint(0,choices-1)

co[n] = colors[c]

• dictionaries

- the borders data is stored in a dictionary :

border = {"YU":["BC","NW"],

"BC":["YU","NW","AL"],

"NW":["YU","NU","BC","AL","SA"],

}
.....

This makes it easy to store the neighbors together with a region, as well as making it easy to retrieve

data by name (no search method required).

- the state dictionary contains each country code and a corresponding number:
state = {"YU":0,

"BC":1,

"NW":2,

...

}

The purpose of the state dictionary is to convert a country code into an index number that is used

to get the matching color in the color array. This is more convenient than a search method.

Computer science teacher support material	 6

Student work: Criterion CInternal assessment: Example 3

These lists are used to combine color assignments and border data in the checkingColors method -

→ see source code for the checkColors method.

- Program Code Listing -

The program is written with good style and reusable methods with parameters and return values,

improving readability and maintainability. The dicitionary structure and convenient Python

commands like slice make the program relatively short.

** Words = 300 **

