
Computer science teacher support material 	 1

Student work: Criterion BInternal assessment: Example 3

Stage B = Detailed Design of Solution

== Inputting Border Data ==

We can use the standard data-structure called a "map diagram" for entering border data.

The user records only connections between regions, rather than borders and large regions, like these

blue lines:

 Source: BBCanada http://www.bbcanada.com/bb_canada_map.cfm accessed 18 Feb 2011

 'Maps courtesy of BBCanada.com, www.BBCanada.com '

Each line segment connects two neighboring regions. Notice that diagonal neighbors, e.g. #8 and #13,

may have the same color.

For each region we only need a list of the connected neighbors. The data can be written like this:

YU --> BC,NW

BC --> YU,NW,AL

NW --> YU,NU,BC,AL,SA

AL --> BC,NW,SA

SA --> AL,NW,MA

NU --> NW,MA,QU

MA --> SA,NU,ON

ON --> MA,QU

QU --> ON,NU,NF,NB

NF --> QU

NB --> QU,NS,PE

NS --> NB,PE

PE --> NB,NS

The user will actually type the data with commas rather than arrows (see example below).

Computer science teacher support material	 2

Student work: Criterion BInternal assessment: Example 3

== Displaying Results ==

Since the goal of the program is to enable students to color in maps, they don't really need an actual

graphical print-out. All they need to know is which color to put in each region, like this:

Printed list of Colors

YU = blue

BC = yellow

NW = green

AL = blue

SA = red

NU = red

MA = green

ON = yellow

QU = blue

NF = yellow

 Students will color the map like this:

 Source: BBCanada

http://www.bbcanada.com/bb_canada_map.cfm accessed 18 Feb 2011

'Maps courtesy of BBCanada.com, www.BBCanada.com '

== Data Storage ==

In summary, the program needs two lists of data:

Borders (the first region in each line borders the others)

YU,BC,NW

BC,YU,NW,AL

NW,YU,NU,BC,AL,SA

AL,BC,NW,SA

SA,AL,NW,MA

NU,NW,MA,QU

MA,SA,NU,ON

ON,MA,QU

QU,ON,NU,NF,NB

NF,QU

NB,QU,NS,PE

NS,NB,PE

PE,NB,NS

Colors

YU,blue

BC,yellow

NW,green

AL,blue

SA,red

NU,red

MA,green

ON,yellow

QU,blue

NF,yellow

NB,red

NS,blue

PE,green

The Borders data should be stored in a data file, as it might be re-used or modified. The Colors data

will be produced automatically by the program, so it needn't be stored in a data file.

Computer science teacher support material 	 3

Student work: Criterion BInternal assessment: Example 3

== Processing ==

The most important part of the program is the automation that chooses appropriate colors, in

accordance with the Borders data and following the rules outlined in the Success Criteria - e.g.:

• neighboring regions must have non-matching colors

• neighbors that meet only at a vertex may have the same colors

• only 4 colors should be used

• fewer than 4 colors should be used if possible

There are two possible strategies:

1. follow an algorithm that automatically produces a successful coloring plan

- OR -

2. assign colors randomly and check whether the set of colors is acceptable (following the rules

above) - if the colors don't work, then repeat with a different random set, until a successful set is

found (or quit after 1000 tries)

The first strategy is what people try to do when they are searching for a coloring plan. I am unaware of

a straightforward algorithm that works for every map. So I will use the random guess and check

strategy. This flow-chart outlines the overall logic of the program:

Input Borders Data

 Choose random colors

count = count+1

Check whether colors

work correctly

Are colors

 correct ?
Tried 1000 times?

nono

yes

count = 0colors = colors - 1

colors = 4

Print list of

correct colors
try another

1000 times?

yes

yes

End
no

Try fewer

colors ?

no

yes

Start

Print "Quitting"

Computer science teacher support material	 4

Student work: Criterion BInternal assessment: Example 3

 == Development Plan ==

The programming can be divided into 4 versions, adding new features in each version.

#1 - Detecting Incorrect Colors (1 week)

• Create a list of Borders data and a single list of colors

• Check whether the colors work by

• Comparing colors of all neighbors by scanning through the Borders data

pseudocode for Checking

 SUCCESS = True

 for each REGION in the Borders list

 for each NEIGHBOR of the REGION

 look up REGION.COLOR in the Colors list

 look up NEIGHBOR.COLOR in the Colors list

 if REGION.COLOR == NEIGHBOR.COLOR

 SUCCESS = False

 return SUCCESS

#2 - Generating Sets of Colors (1 week)

• Generate a random set of colors

• Repeat assigning colors randomly until a correct coloring plan is found

pseudocode for RandomColors

 Colors = empty list

 for each REGION in the Borders list

 select a random COLOR 1..4 (or 1..3 if max-colors is 3)

 record the name of the REGION and the COLOR in the Colors list

#3 - Inputting Borders Data from a File (1 week)

Read Borders data from a data file, allowing the user to type the data into a text file, without needing to

type directly into the programming code.

pseudocode for LoadingBordersData

 COUNT = 0

 Borders = empty list

 open data file

 repeat until end of file

 info = readLine (e.g. BC,YU,NW,AL)

 split info into array of Strings --> data[]

 append data[] to the Borders array

#4 - Final Program (2 weeks)

A totally complete final program should implement higher-level logic as described in the flowchart

above. This must include ample testing.

#5 - Final Testing (1 week)

This stage includes the end-user testing the final program.

Computer science teacher support material 	 5

Student work: Criterion BInternal assessment: Example 3

== Testing Plan ==

Here are 3 BORDER lists for testing the program, together with a successful coloring plan and a

defective coloring plan. Other defective colorings can easily be produced for testing.

Flag

 Colors 1,2,3

Borders good bad

a : b , c , d 1 1

b : a , c 2 2

c : a , b, d 3 3

d : a , c 2 1

3x3 square grid

 Colors 1,2,3,4

Borders good bad

a : b , d 1 1

b : a , c , e 2 2

c : b , f 3 3

d : a , e , g 4 3

e : b , d , f , h 1 2

f : c , e , i 2 1

g : d , h 3 1

h : e , g , i 4 2

i : f , h 1 3

Canada (see map below)

 Colors=1,2,3,4

Borders good bad
YU:BC,NW 3 3

BC:YU,NW,AL 4 4

NW:YU,NU,BC,AL,SA 2 3

AL:BC,NW,SA 3 2

SA:AL,NW,MA 1 1

NU:NW,MA,QU 1 1

MA:SA,NU,ON 2 2

ON:MA,QU 4 4

QU:ON,NU,NF,NB 3 3

NF:QU 4 4

NB:QU,NS,PE 1 1

NS:NB,PE 3 3

PE:NB,NS 2 2

 Source: BBCanada http://www.bbcanada.com/bb_canada_map.cfm accessed 18 Feb 2011

'Maps courtesy of BBCanada.com, www.BBCanada.com '

After stage 1, the sample coloring data is no longer needed, as the program will produce the colors

automatically.

a
d

a

d

g

b

e

h

c
f

i
c
b

Computer science teacher support material	 6

Student work: Criterion BInternal assessment: Example 3

Test plan

Test Type Nature of test Example

Program opens to prompt

for filename that exists

Double click on colors file icon CANADA

Program inputs data from

data file (#1)

Enter file name and see if

program runs

Test with simple data

(#2)

On successful running of

program check visually

Use example where only 3 colors

are necessary

Test with inappropriate

data (#4)

Check program does not run Too much data may cause program

not to complete

neighboring regions must

have non-matching

colors (#3)

On successful running of

program check visually

neighbors that meet only

at a vertex may have the

same colors (#3)

On successful running of

program check visually

only 4 colors should be

used (#3)

On successful running of

program check visually

fewer than 4 colors

should be used if possible

(#3)

On successful running of

program check visually

