
Criterion C - Development

Total Word Count: 1064

Introduction

I programmed an application that keeps track of the food items stored in my client’s house, suggest meals

to cook, and notifies her of expiring foods. The Netbeans IDE is used to make a GUI, and MySQL

Workbench is used to create a database for the data.

Word Count: 47

Summary of Programming Techniques/Tools

1. For loops

2. While loops

3. Single and compound selection (if/else)

4. Nested for/while loops

5. Concatenation and substring

6. Parameter passing

I was working with many tables, and sometimes the same action would need to be performed on each one.

Instead of writing the same code ten times, parameters allow the same method to be repurposed. For

example, because of the three parameters passed to refreshGUITables() this method can correctly refresh

the data in any given table.



7. Arrays

Storing a set of values in an array allowed me to loop through them perform the same action on each

element, minimizing repetitive code. Most arrays I declared were used for their purpose and immediately

garbage collected, like the one seen above, which stored the indices of the selected rows in a table.

8. Linked lists

[There was more code in between that I removed]

LinkedLists were used for a similar purpose as arrays, but when the total number of elements wasn’t

known, since LinkedLists are dynamic. Above, a LinkedList is used to store the values from a result set.

9. GUI interactable elements (JFrame, JTabbedPane, JPanel, JLabel, JButton, JTable, JTextField,

JComboBox, JSpinner, JDialog and JOptionPane)

Existing Java Swing tools were used to create a graphical user interface. JPanels within a JTabbedPane

separated different parts of the program into tabs, JTables displayed data, JButtons added, deleted, and

modified the data, and JTextFields/JComboBoxes/JSpinners were used to input various types of

information. Popup menus were also generated to notify the user of errors or allow for extra user input

that didn’t clutter the original tab.



10. Event listeners

Existing event listeners like mouseReleased and itemStateChange were used in Netbeans to run code

upon user interaction with the GUI.

11. Nested classes



My code used one nested class, which was the TableHeaderMouseListener class. This class extends

MouseAdapter and is used to create MouseEvents that trigger upon clicking the header of a table1. This

class was created inside of MainGUI instead of as a separate class to bypass an error that arose from

referencing a non-static method from a static context.

12. Create an SQL database2

13. Create tables in SQL

a. Primary and foreign keys

b. NOT NULL AUTO_INCREMENT keyword

Tables were created in MySQL Workbench using the CREATE TABLE command. Primary keys were

constrained with NOT NULL AUTO_INCREMENT so that each row would always contain a unique PK.

FKs were used to access values from other tables, like how each ingredient takes on the name and type of

its corresponding ingredient_base.

Some tables were created as “intermediary” tables, used to collate values from other tables before being

ordered by a certain parameter and used in Netbeans. They served the purpose of views, except that views

don’t support multiple JOIN statements (bullet #25).

14. Java Database Connectivity (JDBC)3

A connection was established between Netbeans and MySQL to allow for queries to be executed as a

result of some user interaction.

3 I learned to use a JDBC, Statements, and ResultSets through a playlist of videos. Citation: luv2code. (2014, March
31). Java JDBC Tutorial - Part 0: Overview. Www.youtube.com.
https://www.youtube.com/watch?v=8-iQDUl10vM&list=PLEAQNNR8IlB4R7NfqBY1frapYo97L6fOQ

2 I learned to use MySQL workbench and all the SQL keywords mentioned in this document through a video.
Citation: Programming with Mosh. (2019). MySQL Tutorial for Beginners [Full Course] [YouTube Video]. In
YouTube. https://www.youtube.com/watch?v=7S_tz1z_5bA

1 The code in this class was adapted from an online source. Citation: Minh, N. H. (2019, July 4). How to handle
mouse clicking event on JTable column header. CodeJava.
https://www.codejava.net/java-se/swing/how-to-handle-mouse-clicking-event-on-jtable-column-header



15. Try/catch

16. Statement

Statements were used to run commands like INSERT and UPDATE, changing the database based on user

inputs.

17. ResultSet

Result sets were used in conjunction with statements to SELECT data from the database. This was mainly

used to populate JTables in the GUI.

18. Select clause

19. Insert clause

20. Update clause

21. Where operator

22. Delete command

23. Order by operator

24. Inner join

The INNER JOIN keyword was used to insert data from multiple tables into the aforementioned

“intermediary” tables. Above, a JOIN is used to select the quantity and expiration_date of an ingredient,

as well as the name of the ingredient_base with the same ingredient_base_id key as the ingredient.



Word Count: 494 (not including bulleted lists)

Structure of Program

The GUI is split into three tabs: “Home,” where the user is displayed with important information,

“Storages,” where the user sees and can interact with all food items stored in the house, and

“Recipes/Ingredients,” where the user can create and edit recipes and base ingredients.

The program itself doesn’t have much of a structure, as it’s highly dependent on which of the many GUI

elements in each tab the user decides to interact with. After the main method is called, user interaction

with GUI elements dictates the flow of the program.

Word Count: 92

Main Algorithms

1. Main

The main method uses the TableHeaderMouseListener nested class to add mouse listeners to the

headers of every sortable JTable. It then calls on two other methods to refresh the data in MySQL

“intermediary” tables and all GUI tables.



2. Refreshing SQL tables

refreshSQLTables() uses Statements to delete data from every “intermediary” table in MySQL, then adds

values back in to each table by calling other methods. These methods were separated to not clutter

refreshSQLTables().

3. Refreshing JTables



refreshAllGUITables() calls on refreshGUITable() 9 times, once for every JTable in the GUI. This was

done to avoid clutter, as I could call a single method instead of 9 every time I wanted to refresh the GUI.

Psuedocode for refreshGUITable():

refreshGUITable(parameters: GUI_TABLE, SQL_TABLE, SORTING_ORDER)
connect to MySQL database
select all rows from SQL_TABLE
clear rows from GUI_TABLE
if SQL_TABLE is ingredient_bases

insert rows into GUI_TABLE with ‘name’ and ‘type’ data from SQL_TABLE sorted…
… by SORTING_ORDER

else if SQL_TABLE is recipes or meal_suggestions
convert SQL_TABLE’s ‘ingredients_list’ data to string INGREDIENTS
insert rows into GUI_TABLE with ‘name’ (from SQL_TABLE) and INGREDIENTS…
… sorted by SORTING_ORDER

else if SQL_TABLE has 3 columns
insert rows into GUI_TABLE with ‘name’, ‘quantity’, and ‘expiration_date’…
… data from SQL_TABLE sorted by SORTING_ORDER

end if
end method

The most complicated aspect of refreshGUITable() was converting ingredients_list, which is a String of

keys separated by commas (e.g. “1,5,2”), to a more readable String (e.g. “Ham, Cheese, Bread”). The

code for this is shown below:



4. Changing the quantity of stored item



For each row selected in GUITable by the user, updateItemQuantity() finds the corresponding

ingredient/cooked_meal/bought_meal in MySQL and increments or decrements its quantity.

Initially, I made the mistake of changing the quantity in the SQL fridge/freezer where this food was

stored. The problem was that, whenever refreshSQLTables() was called, this fridge/freezer would be

updated with values from ingredients, cooked_meals, and bought_meals, and the quantity would change

back to what it was before. Thus, I had to first change quantity in

ingredients/cooked_meals/bought_meals before updating the storages. This is what the “food_type”

selection clauses are for.

Also, since ingredients and cooked_meals don’t have a “name” column, I first had to find the

ingredient_base/recipe with the correct name, before finding the ingredient/cooked_meal with the same



ingredient_base_id/recipe_id FK.

5. Deleting an item

deleteItem() works very similarly to updateItemQuantity(), except that ingredient_bases and recipes

can also be deleted.

Word Count: 292 (excluding bulleted lists)

Other Parts of the Code

Most of the code happens when MouseListeners are activated. A lot of this is repetitive, but I’ll explain



some examples.

1. Create button

Clicking “Create New Ingredient” in the “Recipes/Ingredients” tab executes this code, which opens a

JDialog.

2. Add button



Clicking “Add” in the aforementioned JDialog takes in user input and inserts a new row into the MySQL

ingredient_bases table. This code checks to make sure all input boxes have been filled out, and the

ingredient_base name doesn’t already exists, displaying an error message if either of these isn’t true4.

3. Storage filter

4 The code for opening a JOptionPane message dialog was adapted from an online source. Citation: How to Make
Dialogs. (n.d.). Oracle. https://docs.oracle.com/javase/tutorial/uiswing/components/dialog.html



The filter combo box lets the user pick which filter they want to apply into items in the storage tables.

Changing the filter will change the state of filterCB, and this method will run, changing the global

filtering variable for storages and refreshing all tables so the filtered information is seen.

Word Count: 139 (excluding bulleted lists)


