Criterion C: Development
Introduction

The primary purpose of this program requested by the client, Thanavee Sereeyothin, is to be
able to add custom exercises, custom sets, and to view the history of those exercises. The
program was developed with Java in the NetBeans IDE and the graphical user interface was
created with various Java Swing tools for the client to interact with.

Program Structure

Class overview:

e com.mycompany.motto_csia
[&] Exercisesjava
E MainGUIExercises java
[&] exerciseHistory.java

The “MainGUIExercises.java” is the main class. Once the main class is run, the main GUI
appears and the user can interact with the program by inputting the appropriate values. This
main GUI class is dependent on the two other classes “Exercises.java” and
“exerciseHistory.java” as it calls on the function from those classes.

“Exercises.java” is the object template class to store data for different exercises. The class
contains data attributes which are vital to running the program, such as the name of the
exercise and the body part for the exercise. Users can create an instance of the “Exercise”
class, and existing exercises objects are also premade for the user to use. A linked list of
objects are used to store “Exercise” objects.

On the other hand, “exerciseHistory” is a class which stores the history of exercises. This is
used for storing the history of the exercises. Its attributes are from the “Exercises” class as it
mainly stores ArrayLists of exercise history. The user also creates an instance of
“exerciseHistory” every time an exercise is added, and the ArrayLists are modified through
the GUI.

Each class used by the main GUI contains private attributes and methods which are only
accessible after instances are made, meaning that the program uses Encapsulation. There is
also usage of Abstraction as methods within the main GUI such as “updateExerciseTable”
and “updateExerciseHistoryTable” are called in separate instances to manage the complexity
of the program.

Data Structures

LinkedLists - LinkedLists were used to store multiple instances of “Exercises” and
“exerciseHistory”. This dynamic data structure was used, as the amount of exercises would
be continually added, in which it is more advantageous to have a dynamic data structure.

ArrayLists - ArrayLists were used as attributes within “exerciseHistory” instances to store the
history of the respective exercise. The dynamicity of ArrayLists were used as sets are
expected to be continually added and removed. ArrayLists were also used over other types of
lists because of the ability to remove specific indexes, which is convenient as the user can
select the index they wish to remove from the ArrayList.

Unique Functionality

1. Adding Exercises
.
vate LinkedList<Exercises> gxerciscelist = new LinkedList<Exercises>(}:
private LinkedList<exerciseHistory®> exercis ryList = new LinkedList<exerciseHistory>():

public void addExistingExercises(){

Exercises bench = new Exercises ("Bench Press","Chest", "Barkell

exerciseHistory benchHistory = new exerciseHistory("Bench Press");
oryList.add (benchHistory):;
.add (bench) ;

Exercises squat = new Exercises("

rbell Squat”,"Legs"™,"Ba

rbell Squat"”,

exerciseHistory squatHistory = new exerciseHistory("Barkel
s storyList.add (squatHistory):;
t.add (squat)

Exercises dl = new Exercises("Deadlift","Full Body","Barkell™):
exerciseHistory dlHistory = new exerciseHistory("Deadlifc™);
H oryList.add (dlHistory):

Laddidl):
Exercises curl = new Exercises ("Dumbbell Bicep Curl"®,

exerciseHistory curlHistory = new exerciseHistory("Dumbkell Bicep
o= orylList.add (curlHistory):;
=t.add (curl);

The following code creates lists for the “Exercise” and “exerciseHistory” objects. The
“addExistingExercises” method adds 4 premade exercises for the user to use, and the method
is called within the main class.

private void addExerciseButtonMouseReleased(java.awt.event.MouseEvent evt) {

1. getText () ,bodyPartComboBox. getSelecteditem() .toString () ,welght TypeConboBox. getSelectedIten() . taString ())
exerciseHistory a = nev exerciseHistory(enterfxerc

Exercises e = nev Exercises(enterExercise

iseTextField.getText ());

updateExerciseTable () ;
updateComboBoxes () ;

}

The mouseEvent method is called when the “Add Exercise” button is clicked. The exercise
information is subsequently taken from the text fields and combo boxes to create a new
instance of both classes, which are then stored in their respective lists.

2. Searching for exercises
private volid exerciseSearchButtonMouseReleased(java.awt.event.MouseEvent evt) {
for{int 1 = 0; 1 < exerciselist.size();i++){
if({exerciselist.get (i) .getExerciseName () .equals(searchExerciseTextField.getText ())) {

for(int row = 0; row < exerciselist.size(); rowt+){
row, 0);

row, 1);

row, Z2);

selist.get (i) .getExerciseName (), 0, 0);
=List.get (i) .getExerciseBodyPart (), 0, 1);
xerciselist.get (i) .getExerciseWeightType (), 0, 2);

1

The “exerciseSearchButtonMouseReleased” method is called when the button to search for
exercise is clicked. This does a simple linear/sequential search through the exercise list to
search for what the user inputted in the search text field. After the search is performed, the
display table is reset and a singular value is fetched from the exercise list to display in the
table.

3. Adding Sets

private void addSetButt leased (java.awt.event. MouseEvent. evt) |

r(int rylist.size();itt){
get(1).getExere Name () . equals (chooseExer ctedltem() . tostring())) {
st.get(1).addSet (=nte teChooser.getDate () . toString() oBox.getSelectedItem() .toString (), Integer. parselnt : i.getText ()}, Double. parseDouble (=nt .getText(}));

NurkerFormatException ex){
ptionPane.shovMessageDialog(this, "One or more inputs are invalid. Iry again”);

The “addSetButtonMouseReleased” is called when the button to add set is clicked. It initially
uses a sequential search to match the selected exercise in the combo box with the one on the
list. The method utilizes the “addSet” function within the exerciseHistory instance to append
the data from the GUI to its various ArrayLists. There is also a try and catch for error
handling when a user inputs an invalid value.

4. Removing Sets from Exercise History

private void removeSetButtonMouseReleased(java.awt.event.MouseEvent evt) |

toryList.size() ji++) {

.setValueht(null,§,0);
.setValueht(null,j,1);
.setValuekt(null,j, 2);
le.setValuekt(null,§,3);

cryList.size() ;it+) {

get (i) .getExerciseHistoryName () .equals (sxex

able.getSelectedColumn{));

ciseHistoryList.get(i).getExerciseDates().size(); j+#){

sesTable.getValueht (=x

esTable.getSelectedRow(), 0).toString())){

get (i) .getExerciseHistoryName () .equals(exercisesTable.getValuedt (exercisesTable.getSelectedRow(), 0).toString())){

t.get (i) . removeSet (exerciseHistoryT
. exerciseHistoryList.get(i).getExerciseDates().size(); j++){
le.setValuekt (ex t.get(i).getExerciseDates().get(j), j, 0);

.setValuekt
.setValueat (

get(i).
get (i)

le.setValueAt (exerciseHistoryList.get (i)

getWeightUnits() .get(j), 3, 1);

-getReps () .get(3), 3. 2);
.getWeight () .get (i), 3, 3);

The “removeSetButtonMouseReleased” method is called when the corresponding button is
pressed. The initial for loop resets the exercise history table. The second for loop fetches the
array the user is selecting, removes the respective index in the ArrayList, and re updates the

exercise history display table.

GUI Elements

The following Java Swing tools were used for an easily interactable and intuitive GUI:

JTextFields
JComboBox
JDateChooser
JButtons
JLabels
JTabbedPane
JDialog
JOptionPane
JMenuBar

Enter Set Add Exercise Exercise History

Exercise Mame Body Part Weight Type

Exercise Mame

Mame Search

Refresh

Yiew History

Enter Set Add Exercise Exercise History

Choose Exercise

Weight Unit

Reps:

Weight

Dates

Add Set

kg e

Enter Reps

Enter Weight

=

Software Tools Used

The Apache NetBeans IDE version 13 was used to develop this program. The user friendly
design allowed me to easily create a GUI interface which matched the needs of my client. An
additional library called “jcalendar-1.4.jar” was used to add a date selection element to the
GUI to make inputting the date easier for the user.

Word Count: 762

