
Criterion B: DESIGN

Prototype and Annotation

As it is not possible to meet face to face with the client during the Covid-19 pandemic, I
researched prototyping tools that can be used to share the prototype with the client. I opted to use
Adobe XD as my prototyping tool. After designing the first prototype, a link to the interactive
prototype was shared with the client where he may also provide feedback in his own time. We
have had several discussions regarding the prototype. Below are some interactions.

Initial prototype during discussion with client

1

Subsequent prototype and online interaction

2

Final Prototype:

Before option selection

After option selection

3

Result with graph

4

Processing Flowchart
The flowcharts outline the overall logic of the program.
Account ownership diagram

5

Dashboard Flow diagram

6

Data Retrieval Flow diagram

7

Class Diagram

8

Pseudocode
The following pseudocode methods are written to understand the basic functionality of the main
methods that are needed in the development of the program.

Compute Initial Plot Data
//computes data for plot based on notes in chord and reference table
void computeInitialPlotData

var plotData
accept multiplier, tuning, octave, notes
validate user inputs

if valid = true:
check corresponding reference table
retrieve reference data
for each user input:

calculate plot data using reference data and user input
//if values have same frequency, stack
append to plotData

else if valid = false:
display error

Show dashboard, compare, logOut

Generate Plot Array
//preparing to generate graph by creating a plot array
void generatePlotArray

var plotArray
accept plotData
calculate range of plot
prepare plotArray //generate empty array with range of plot

for each data in plotData:
insert into plotArray

//ready to pass plotArray to plotGraph

9

Plot Graph
void plotGraph:

accept plotArray
prepare graph:

set x axis = frequency
set y axis = amplitude
set legend
//assign colors to legend according to different notes
set title
provide options for zoom, save

plot graph

if zoom = true:
set x axis = frequency
set y axis = amplitude
set legend
//assign colors to legend according to different notes
set title

if save = true:
save graph

Retrieve Chord
Boolean UserLoginStatus = true //to keep track of current user

display list of saved chords data
accept chord selection from user

if syntax validation = true:
display notes in array
plot graph

else if file open validation = false:
display file open error;

else if generate graph = true:
compute plotting data and graph

Show Dashboard, Logout

10

Save Chord
Boolean UserLoginStatus = true //to keep track of current user

accept chord selection from user

if syntax validation = true:
format chord data
save chord data to file

else:
display file save error;

Show Dashboard, Logout

Chronological Development Plan

● Develop UI/UX based on mockup design (1 week)
○ Develop UI/UX components
○ Develop UI/UX classes
○ Implement comments for understandability and extensibility

● Develop code for input functions (2 weeks)
○ Develop for frequencies

■ Acquire reference table - convert to useable data file format
■ Develop data retrieval
■ Develop data formatting

○ Develop input configuration
■ Develop for Octaves
■ Develop for Notes

○ Develop for Array of Notes
■ Store array of notes in chord
■ Display array of notes as selected
■ Clear array of notes

● Develop code for chart (2 weeks)
○ Import plotting library
○ Data retrieval from file
○ Develop graphic design code
○ Configure font, colors, other appearance settings

● Develop file save and retrieve features (2 weeks)
○ Develop Save function
○ Develop Retrieve function
○ Interaction with json CSV filetype

11

Testing Plan
● Unit Testing

○ Test UI/UX functionality
■ Click buttons - debug GUI code if not functioning
■ Check for successful actions - fix malfunctioning methods
■ Try invalid inputs in texts fields - implement try/catch

● Null inputs
● Special/illegal characters

○ Test reference table functionality
■ Correct file format if not being read properly
■ Debug code if file not being read

○ Test chart drawing functionality
■ Use known values to compare against an externally created “correct”

graph. Check graph plotting code if inaccuracies are found.
○ Test file storage and retrieval functionality

■ Ensure file generation
● Check for version of file interaction libraries if an error occurs

■ Ensure data is appended to user and chord files as intended
● If shown otherwise, debug saving and retrieval code

○ Test math functionality
■ Validate output values. check algorithms if unexpected results occur

● Negative values
● Unexpectedly large values

● Integrated Testing
○ Test all the functionality together with known data

■ Compare to known results calculated externally using said known data.
Review code if inconsistencies occur

○ Test all the functionality together at datapoint extremes
■ Test functionality at maximum and minimum values. Fix code if errors

occur. If maximum and minimum values are not sensible, a sensible result
should not be expected; these cases are not errors.

● Functionality Testing
○ Check interaction between GUI and backend. If this is a communication error,

review code. Otherwise, check if code files are in correct directories.
■ Registration
■ Login
■ Graph Generation
■ Save and retrieve functionality

● Chords
● Users

12

● User Acceptance Testing
○ Ensure that features requested by the user are provided.
○ Review user feedback and adjust code accordingly.

13

