
Development plan

1. Process raw data
a. Calculate the torque of the motors with raw data
b. Include gravity to make it more accurate
c. Have an easy to read a chart to show data

2. Dynamic data
a. A secondary mode that shows motor running in real-time
b. Data can also be manipulated in real-time
c. Updating data display

3. Suggestions
a. Offer advice if the motor would not work
b. Offer advice to make sure the motor works predictably

i. Simulations rely on ideal circumstances which don’t always reflect real life

4. Clean up and optimize program
a. Make the UI more user friendly and professional
b. Get rid of unnecessary tools made for production
c. Make sure there are no input errors

5. Finalize testing
a. End-user testing and final program

To the right we can see how we would
originally want the program to run and
process however through the development
of the applications my client and I
discussed a new way to make what they
wanted. Instead of having a static
calculation the motor would constantly spin
and could be changed during runtime to
see live changes in the motor which would
be a better representation of how motors
would work in robotics.

When starting the program there are
technically now two different modes you
can select but they both operate in almost
the same way. The only difference is that
one updates in runtime while the other

makes predictions and calculates based on unchanging variables.

The diagram to the right would show how the flow of the unchanging data during processing
would work. If it were dynamic then the ‘input data’ node would be accessible from any other
point in the process.

The main method that we use to calculate the torque added to the motor is combining the
induced torque from the motor itself and then get add the force added by gravity (including
vector direction).

Torque equation: 𝑇 = 𝑟𝐹𝑠𝑖𝑛Ө

This means though that we need to recalculate the nettorque for each update to the rotation of
the motor. The main difference is that in the dynamic calculations this is constantly updated
while the alternative only needs to be put through a for loop to calculate the change in torque
over time.

The issue for needing to input the force caused from gravity came to my concern because if the
weight was not lifting something significantly heavy then we could neglect the weight but since
we need to make sure that it not only can more accuratly simulate reality this program is also
used to test motors and gears so that it has a higher chance of working in real life. A major
cause for them not working properly in real life is subsequently the weight which needs to be
taken carefully into consideration.

A concern for that came to mind within this project was also that user in real life can program
their vex robots to work based on velocity rather than force. This however was typically used for
wheels instead of lifts and didn’t need to be tested before use for physics based problems.
Since we use torque we are able to make easier calculations for the user. This mainly though
comes down to the fact that we do not know the exact method VEX uses to update their motors
using velocity.

Most of testing will come down to situations that have random inconsistent data input. For staitc
data we need to make sure that no input can break it so there are the correct catch catches but
also that it catches impossible situations and uses the suggestions class when prompted. The
dynamic simulation would be similar but also for quickly changing the variables in runtime and
making it sure it does not break because of that.

