
Criterion C - Development

I used PyQt5 instead of TKinter as it allowed for more interactive GUI modifications which made the
GUI much more visually appealing and much easier to manage. PyQt5 comes with a designer that utilises
a drag-and-drop interface and an extensive library for creation of an intuitive application.

Modules/Libraries Used

The program is a time series forecast algorithm which requires readable dating format and numerical
calculations which is the purpose of the pandas, matplotlib and numpy libraries. These libraries are used
to create graphs, tables and perform format conversions.

Keras is a popular machine learning library that offers a wide variety of tools and modules for training AI
programs. In this program, forecast is achieved through training the data using a Long Short Term
Memory model. This required a number of modules commonly found in ML algorithms.



This program heavily relies on encapsulation to manage the usability features. The GUI is modified
through exporting the UI files for each of the windows to a python file, which is then imported into an
application framework python file (app.py) that customises the code and handles the usability of the gui
itself. The app.py file exists when the converted UI program is modified via the python file, the modified
python gui file can’t be re-converted into a UI file and the added changes are lost if the window is
modified in PyQt Designer.

The following code shows an example of the PyQt designer code converted from a UI file for the
selectWindow:

This is then imported into the app.py file and the GUI elements are modified and customised as the
following displays



The class inherits the UI layout from it’s parent function (being the selectW.Ui_MainWindow) then
usability features are added. Here, the activity of the buttons are being linked to opening new windows.
Keeping the code in the app.py file ensures that the functionality of each GUI element isn’t lost when any
of the UI python files is updated.

When the main script is run, it displays the following window



Logging Files

The insert data file allows for data to be manually inserted into the program. The code here utilises
modules from the panda library in order to read the file into the program.

The button is connected to a PyQt module called ‘QFileDialog’ which prompts open a file browser and
reads the selected file into ‘filename’. The arguments limit the browser to only accepting CSV files since
that’s what the program is limited to working with (as the prediction algorithm only works with csv files)
and to prevent any errors from uploading an unreadable file.

The class also has the function get_path() because the file uploaded is the one that will be worked with in
the data visualisation window (dataWindow) and the predict window thereby requiring a function which
gives the other classes access to the uploaded data.

The logging window’s GUI is as follows



Table Display

The data frames of this application are read using modules from the python pandas library and are given
in a 2D array. To embed these tables into the application, a new model had to be created to display the
data through the PyQt Table widgets.



The most important method there is the data method, which does the conversions to make the data frame
format embeddable inside a PyQt program.

This is then called in the main function of the loop to display the table.



Graphing

An important aspect of this program was generating graphs for forecasting, which had to be done through
embedding matplotlib plots (which are a python library used for data visualisation). Matplotlib is much
more versatile in terms of data plotting and it creates graphs that are much cleaner and easy to read as
well as modify in code.

The graph is embedded in a widget that was customised to be compatible with matplotlib graphs through
the code below:

The custom widget is applied to the UI code which allows it to plot matplotlib graphs.



The MplCanvas is then called in the app.py code for the data window to display the graph through putting
it in the widget.

Following is what is originally displayed in the graph upon being prompted open, and what is displayed
after button is clicked.



Predictive Algorithm

The predictive algorithm takes in the dataset and takes in the dates and sales and creates a new dataframe.
Some pre-processing has to be completed before the algorithm could actually fit the data into the machine
learning model.



The data is processed and split into a ‘train’ and ‘test’ set that will be sent through the machine learning
algorithm, which is a standard practice when working with such algorithms.

The algorithm uses a Long-Short-Term-Memory neural network model, which is a model that uses
previous data to continue improving the forecasting ability in a sequential manner.

The algorithm takes around a minute to generate results, which is relatively fast considering the program
is being run through a non-GPU supported environment which highlights the benefits of using python in
place of other languages for implementing extensive data analysis algorithms. The results are as shown in
the window below.

The sale forecast feature of this program is the most crucial component as it is what the program was
specifically designed for.




