
CRITERION C: DEVELOPMENT

Introduction

This Teacher Organizer Java program was developed via Apache Netbeans. Tools such as Swing
Controls and Swing Windows were employed to achieve the final graphical user interface.
Remembering that the client required the program to add information on new students and be able to
search them.

List of Techniques
● Graphical user interface
● Global and local variables
● Methods
● Parameter passing
● For loop
● While loop
● User-defined objects made from OPP template classes
● Arrays
● Sorting
● Searching
● Array List
● Linked list
● Returning absolute chosen file path
● Encapsulation, using get and set methods
● Aggregation
● Inheritance

Structure of Program

OPP was employed because it seemed the most natural
approach to problem-solving as it allowed the creation of
multiple instances of the same kind of object.
Furthermore, encapsulating the attributes of specific
template classes could be manipulated in its public
method.

Noticing the Java classes in Netbeans, the classes with
OOP relationships: Grade, Parent, Student, and Tuition.
The main relationships between them may vary from
Criterion B, however, aggregation was used to create
functionality by taking different classes and combining
them into a new class: Parent has a Student, Student has
a Grade, Student has a Tuition. The other

SortAndSearchStudent class was created to organize all sorting and searching programs under one
class for organization. Also, two packages were created: Login and Main. Mostly everything is under
Main except the TeacherLoginPage GUI which is the first interface for the user before redirecting to
the MainGUI. Also, external libraries, such as the JDateChooser, were used in order to meet the
client’s desired GUI requirements.



Variables:
A global variable is used in the main class of the program. The public variables used in the Main class
are accessible by all classes. The encapsulation allowed the private variables to only be changed by
using the access methods.



Methods:
The main methods used in the program vary from the class diagram presented in Criterion B. Having
written only the algorithm for some of these methods, I had to perform a few extra tasks in order to
develop the program.

The private methods, AddNewStudentButtonMouseReleased and
ADDNewSRefreshButtonMouseReleased, are used to input and output information into the
NewStudentTable. This method uses aggregation where the Parent has a Student.

Sorting:

I used selection sorting for all the alphabetical sorting because it is efficient as it only swaps values
once every outer pass. This is done when each pass keeps track of which is the smallest and then
swaps only once at the end of the full pass. In this example, an outer for loop repeats through the array
of classes. When each pass is initised, the program assumes that the initial location is the smallest
element. Each element is checked to see if they are smaller than they are assumed to be. IF they are
smaller than, the newest smallest element is assigned to be the smallest, estenaillty they are swapped.
This is kept track of with the minIndex. This process is repeated until the ArrayList of classes is
sorted.



Searching:

Linear search seemed the most logical. If while doing the search the key is found, then the element
where it is located is returned and the program stops. If the key is not found, then -1 is returned. It is a
good choice because it doesn’t waste time looping if the key is found. Even though binary search
would be the more efficient search by cutting the possible number of elements to loop through in half
each time. It is not useful in this case where the array is constantly changing and will not always have
even number of elements for balance.

Data Structure Used

Two-Dimensional Arrays:

The reason why 2D Arrays were used because it stores an array of arrays. In the program, there are
four tables that can be considered as examples. Since there are multiple rows, each row is itself an
array of column elements. It is used to store objects; in this case the Student.



Array List:

It was sensible to use this because it mimics real-life situations in the Last-In-First-Out(LIFO) or
First-In-First-Out(FIFO) manner. It is used to store a dynamic collection of elements. It was chosen
because the size of students the client receives is always changing. As it expands by itself when new
elements are added, no memory is wasted whereas arrays are helpful when the size is fixed. The
disadvantages is that it provide direct access to only the head of the list, which makes searching
inefficient.

Uploading File Algorithm

In the Classes panel, the user can choose a file from their desktop and save the pathway that is taken
to reach the document for future reference.

I imported an external library for the JFileChooser and then created a new object to use as instance,
later on, to open the Dialogue Swing Window with all the files from the respective desktop. Then the
getAbsolutePath() method pathname of the given file object.



I set up a login page as requested by the client by creating a Java Package. This allows the user to
create their username and password for their login. Furthermore, if there is an error a dialogue would
pop up with a warning message to enter the login information again.



User Interface/GUI



Software tools

● Apache Netbeans 11.1- Netbeans, as a development environment, was useful since it had
many GUI libraries and free import of external libraries.

● Draw.io - flowchart, class diagram
● Google docs
● Lucidcharts - class diagrams
● iMovie - video
● Otter.ai - transcribe

Word Count: 893


