
Criteria C
Total words: 879

Introduction words: 44

I developed a program that allows my client to take in and store the

information associated with different donation contribution forms. New contributions

can be added and then edited and exported to Excel. I used the Netbeans IDE to

design a GUI interface for ease of use, and an OOP approach to allow for

encapsulation, polymorphism, and inheritance.

Summary of Programming Techniques words: 0

- parameter passing

- random number generation

- for loop, while loop, and nested loops, and a method returning a value

- arrays, 2d arrays, and an array of objects

- user defined objects made from an OOP "template" class

- encapsulation of private methods that work on public attribute of a "template" class

- simple and compound selection (if/else)

- sorting (bubble sort) and searching (binary search…)

- saving to a file and catching an IOException

- GUI tabs

- GUI popup menus

- Use of a flag value (such as -999, or "not set yet")

- overloaded constructors, which work differently depending on the parameters sent

- inheritance between a superclass and a subclass

- use of some other specialized library you imported

- linked list, or any other ADT, like binary search tree class…

- ADT methods

Unique tool implementation words: 124

The imported class NaturalOrderComparator is used to sort the estimated

amount of donation money. This required a special class because the amount

estimated is set as a String value, with the potential of including non integer

characters. So by passing the amount attribute of the Contribution ArrayList, I can

use the NaturalOrderComparator to ensure no errors are thrown when my program

is run.

Another imported class is the ExportData class which allows my program to

save a .xlsx type file which can be opened in Excel. This functionality uses

apache.poi libraries and creates a data table with headers and rows for each unique

contribution. This allows my client to save data in such a way that they can send it to

coworkers easily.

Structure of the Program words: 177

❖ The main class has instances of the jFrames

LoginScreenPopUp and TableOfRequests.

❖ The classes NonEarmarkedContribution and

EarmarkedContribution are both subclasses

of the Contribution class

❖ The Country class takes in instances of

objects of type Country and DateSelfMade.

❖ Instances of the SortingSearchingComplex,

NaturalOrderComparator, and ExportData are used to modify and interact with

the data in the TableOfRequest class.

I decided to separate my program into these different classes because it

allowed me to keep track of the functionality for each class. It also allowed me to use

encapsulation to remove the access the client would have to some of the variables

and methods. This increases the security and hides the data in the classes from

non-authorized users or methods.

The subclass structures allow polymorphism in the arrayList. By creating the

ArrayList of Contribution objects I could

then specify the object type as one of the

subclasses and have different

functionalities depending on the item

type. By overriding methods I was able

to handle contribution forms both when

they are assigned to a particular country and when they are not.

Data Structures Used words: 137

I used an Array of objects, 2d Arrays, and ArrayLists to structure my data.

Both the 2d Arrays and ArrayLists are not fundamental data structures in Java,

however their additional functionalities were the most appropriate for my program.

The dynamic nature of ArrayLists helped ensure that my client will be able to add an

unrestricted amount of new contributions, without setting aside a potentially

excessive amount of memory space. The 2d arrays were used as tables to present

the contributions in a visually intuitive manner, while the array was used to store the

recommended contributions. This made sense because there will only ever be at

most 3 contributions that need to be in the array at any given moment.

Most of the data structures used, employed attributes of the user defined object

Contribution and its 2 subclasses.

Unique Algorithms words: 275

A more complex part of my program is the recommendation table. While all

the contributions are shown in the main table, 3 specific contributions show up in a

smaller table. This is to help my client prioritize working on these particular

contributions which are sorted and selected based on a few criteria.

In this recommendation table there is one example of a non earmarked

contribution (meaning that it has no geographical interest), one Earmarked

contribution that does not have all essential attributes such as donor name or

amount estimated filled in, and a final contribution that has all important data fields

completed.

214 try{
215 for(int index = 0; index<contributions.size(); index++){
216 String country = contributions.get(index).getGeoInterestName();
217 //if contribution is not earmarked and there is space in the genArray left
218 if (country.equals("non-earmarked contribution") && genIndex<2) {
219 System.out.println("nonE Added");
220 genArray[genIndex] = contributions.get(index);
221 genIndex++;
222 }//if contribution is earmarked, key info like donor name/amount is blank, and there is space
in the ncArray left
223 else if((contributions.get(index).getDonorName().equals("") ||
contributions.get(index).getAmountEstimated().equals("")) && ncIndex<2){
224 System.out.println("nc Added");
225 ncArray[ncIndex] = contributions.get(index);
226 ncIndex++;
227 }//otherwise and space in cArray
228 else if(cIndex <2){
229 System.out.println("c Added");
230 cArray[cIndex] = contributions.get(index);
231 cIndex++;
232 }
233 else
234 System.out.print("Out of space in the arrays");
235 }
(...more code can be found in my program..)
262 }
263 catch(NullPointerException error){
264 System.out.println("OH NO! fatal " + error);
265 }

From the large list of all contributions the recommended options are selected

based on the severity of the crisis in a particular country (this severity rating is set

based on the refugee crisis in a set of countries) and on the amount estimated for

the donation. I chose this design because it seemed important to have an easy to

access set of contributions that my client might want to focus on. The slight random

selection of two high priority contributions in each of the three categories is an

efficient way to cycle through important contributions and increase the likelihood of

highlighting a contribution my client may want to focus on.

I also separated the profile input form

from the list of contributions by restricting

access through a login screen. This is important

because the donors should not have access to

the other contributions. By having a login screen

pop up and a boolean value linked to the

username and password text fields, only the

allowed client can make modifications to the contribution list.

Software Tools Used and User Interface/GUI Work words: 122

I used the Netbeans IDE - which stands for Integrated Development

Environment - to design my code. I chose this IDE because it has features such as

integrated spellchecker, debugger, and can run the program from inside the IDE. It is

especially user friendly because of its intuitive interface and vibrant color scheme.

Netbeans also allows the creation of a GUI interface. I was able to use the

netbeans features to design GUI components to improve the accessibility of my

program. I used Combo Boxes, Radio Buttons, Text Fields, Buttons, and Tables to

ensure an ease of use for my client. Netbeans made the implementation of these

java Swing elements simpler as each item can be dragged/dropped into place and

used very intuitively.

