
Criterion C - Development

Introduction

This program performs two main functions as requested by my client, the Lost&Found team: generate
a barcode to label lost items and keep track of the lost items. Through using Java’s Swing tools in the
Netbeans IDE and object-oriented programming, I created a graphical user interface that the client
would be able to easily interact with.

Word count: 56

Summary List of All Techniques
● For loops and while loops
● Nested loops
● Parameter passing in methods
● Methods returning a value
● Array of objects
● User defined object made from an OOP “template” class
● Simple and compound selection (if/else)
● Sorting
● Searching
● Error handling
● GUI tabs
● Use of GUI features: jTextField.getText(), itemTypeComboBox.getSelectedItem(), etc.
● Inheritance between a superclass and subclasses
● Use of libraries (for barcode generation)
● Encapsulation of private methods and attributes with accessor and modifier methods
● Use of global variables such as “counter”
● Parsing values into appropriate data types

Word count: 0 (Bulleted List)

Structure of the Program
Overview of all classes:

The main class of this program is the GUI class. When the user runs this main class, they can interact
with the program by entering inputs and viewing outputs generated by the different algorithms of the
program.

The program also includes object template classes which are used to store data. The superclass ‘Item’
is denoted with the data attributes common to all items that come to the Lost & Found; those such as
date found, name of item, etc. In the program, instances of the ‘Item’ class (objects) are created based
on user input. An array of objects is then created to handle all ‘Item’ type objects.

The two subclasses that extend from ‘Item’ are ‘LostItem’ and ‘FoundItem,’ which denote the two
types of items the Lost & Found team must keep track of. Since these subclasses extend from ‘Item,’
they contain all the methods and attributes of ‘Item’ and, hence, inheritance is used. These subclasses
were made since if an item has already been found, the client requires more information to be stored
in terms of collector name and collector ID. If it is lost, the client must know whether it has been lost
for more than four weeks.

Required user input for when ‘Collected’: Required user input for when ‘Hasn’t been collected’:

This structure of classes allows a ‘LostItem’ object and a ‘FoundItem’ object to be treated differently
as they should. However, the commonality provided by the superclass allows both to be stored in the
same data structure.

The main GUI class also uses two other classes, enabling the user to use algorithms on the data that
has already been inputted. These two classes are the ‘SortAndSearch’ class and the
‘BarcodeGenerator’ class. Hence, this program has dependency.

Encapsulation is used since with all the classes used by the main GUI (e.g. ‘SortAndSearch,’ ‘Item,’
etc.), each class has private attributes and methods which can only be accessed after creating instances
of the class. The attributes and methods are further accessed via accessor and modifier methods. With
object oriented programming, I was able to use abstraction to deconstruct a problem into smaller
problems which can be solved. The separate classes such as ‘BarcodeGenerator’ and ‘SortAndSearch’
are evidence of this as each of these classes contain specific operations which can then be used by the
main GUI class.

Word count: 374

Data Structures Used
1. Array of objects
Arrays were used to store objects that represented individual items brought to the Lost & Found.
Arrays were chosen as they can be easily indexed, meaning that sorting and searching processes are
made more efficient as opposed to dynamic data structures. An array was also used as the Lost &
Found receives more or less the same number of items each month.

Main Unique Algorithms
1. Barcode generator

Use of Barcodes:
Since the Lost&Found team had to keep manually creating labels for ‘date’ the items were found, my
client requested an automatic barcode generator. Initially, I had wanted the barcodes to encode more
information than just date. However, I decided that that might be too difficult, so instead, this becomes
a direction in which my project can extend towards in the future (encoding more information within
barcodes). Hence, having these general barcode methods (below) adds to the program’s extensibility.

Sample Output:

How It Functions:
The barcode generator algorithms are stored in the ‘BarcodeGenerator’ class. The class itself contains
two methods that have the function of generating barcodes. The first method
‘createColumnsOfBarcodes’ generates a single column of barcodes.

The second method ‘createMultipleBarcodes’ calls the ‘createColumnsOfBarcodes’ method to create
the multiple columns of barcodes accurate to the total number of barcodes the user requires. Since the
space on each A4 sized pdf file can only contain 3 x 7 barcodes, the ‘createMultipleBarcodes’ method
also takes this into account by using conditional statements.

2. Generating a pdf of barcodes
Within the ‘BarcodeGenerator’ class is the ‘createPDF’ method used to create the file onto which the
barcodes will be placed. This method also calls the ‘createMulitpleBarcodes’ method inorder to create
a pdf of barcodes. This method uses the ‘itextpdf-5.4.0.jar’ library and takes in Strings
‘pdfFileName,’ ‘myString,’ and integer ‘numberOfBarcodes’ as arguments, allowing the user to
specify what String to encode, what name the file should be saved as, as well as the number of
barcodes to be printed.

3. Adding Items: Creating Item objects during runtime based on user input
Based on user input, the main GUI class decides whether to store data as a ‘LostItem’ object or a
‘FoundItem’ object.

When adding items, there are also different case scenarios that the program must look for. For
example, if the user selected ‘other,’ the program should take in user input from the jTextField instead
of the jComboBox to make the data attribute for the object.

All the objects are then stored in the correct index of an array via using a counter. The counter also
enables the user to see how many items have already been stored.

4. Sorting items (notably, sort by ‘Date’ and use of substrings and compound conditionals)
The program also includes Bubble Sort algorithms used to sort objects in the array. The ‘sortByDate’
method is the most complex out of the four. Since the ‘date’ data attribute in the object is stored as a
String in the form “dd-mm-yy,” a substring method is first used to divide each ‘date’ into three
integers: dd, mm, and yy. This is done so that the year, month, and date of the two ‘dates’ can be
compared separately. Through simple and compound selections, two dates are compared accurately
and the object switched if appropriate.

5. Display items in the jTable
In this program, data about each item is displayed in a jTable. The simple algorithm used for
displaying data utilizes a For loop to iterate over the array, filling in data for each row at a time. When
an item is found, there is more data that needs to be displayed. Because of this, collector information
is concatenated with “collected status” using html string formatting.

6. Error handling: checking whether all user input is valid (applies mostly to text fields)
Error handling for this program checks whether the user input is valid. This is important as user input
is used in multiple algorithms. If an input is not valid, the program does not accept the value and
shows an error message. An example (in this case, checking for student name) is shown below.

Word count: 612

User Interface/GUI Work
This program utilizes Java’s Swing tools to allow the user to interact easily with the GUI. The
components used are listed below:

● JTextFields
● JCombobox
● JButtons
● JLabels
● JTabbedPane
● JCheckBox
● JTable

Ex. GUI Features on the ‘Data’ Tabbed Pane:

Word count: 22

Software Tools Used
The Netbeans Integrated Development Environment was used to code this program. This tool was
chosen as it is user-friendly and allows the programmer to easily create functional GUI interfaces.
Two libraries were used to write pdfs and barcodes: ‘itextpdf-5.4.0.jar’ and ‘barcode4j.jar’. Another
library was used to aid users in selecting dates: ‘jcalendar-1.4.jar’.

Programmer’s interface on Netbeans (including Swing tools, object properties, GUI view):

Word count: 58

Total word count: 1122

