Input and Output Tables:

Criterion B - Solution Overview

Input Data Type | Normal Range etc. Example
Date Date With the calendar option and some formatting, the 19-02-20
Object input should first be a Date object (represented in the
form yy-mm-dd when .getDate() is used)
Number of copies (of Integer 0-21 20
barcodes needing printing)
File name String A string of letters, numbers, ¢’ or ‘-’ “barcode_as_pdf”
Type of the item found String “Water bottle”
1-10 types listed in a combo box
Claimed status Boolean Two options to choose from False (means hasn’t
been collected)
Lost status: has been lost for | Boolean Can select radio button or leave unselected True (means has been
longer than four weeks? lost for four weeks)
Sort item by String Three options to choose from “Name”
Name of collector String A string of characters consisting of the last name and | “Charlie Parker”
first name
Collector ID Integer A five-digit integer 15638
Output Data Type | Normal Range etc. Example
Item String Would be a large range of different strings since there | “Blue Cap”
are a variety of lost items.
Date String Eight characters “01-02-19”
Type String “Hat”
1-10 types listed in the combo box
Status String Two options to be displayed “Hasn’t been collected”




Has been lost for longer String Two options to be displayed (e.g. Has or hasn’t) “Has been lost for four
than four weeks weeks”
Barcodes on a pdf file Document | No range 11 identical barcodes
arranged on a pdf file
Class Diagram:
= sortAndSearch = MainGUI
+ sort(...) /Input Tab
+ search(...) _usesa |- calendarOption: calendar extension
- - typeTF: comboBox
- collectedButton: JButton
= barcode
s //Output Tab
- date: String - outputTable: JTable
- barcode: String
- numberOfCopies: int
has a
1 Y
has a =
= ltem
=l Lostltem - name: String
~name: String ) - itemType: String
- itemType: String Isa |- barcode: Barcode
: > :
- barcode: Barcode - date: String
- date: String
- claimedStatus: Boolean AOA N A
- lostForMore: Boolean
is a
= Foundltem
- name: String
- itemType: String
- barcode:_ Barcode is a is a isa
- date: String
- claimedStatus: Boolean
- collectorName: String
- collectorID: Int
Sports gear | | Educational tools | | |




Flowchart:

False True
"Database" jPanel

clicked on

stay on
"Barcodes" panel

go to Database
panel

"Access camera” True

[Button clicked on

user is interested
in Search&Sort

go to camera | |input new items

stay on same
panel
h 4

f input date ;

input number of
copies

False

user interested in
Search

input date

A A 4

input "sort by" item input/type name of
type into combobox item into textfield

"collected”
checkbox checked

True

Clearal ) False
previously

inputted data
v Y

input False into input True into
database database
—
print barcodes

A A

input collector

name (student
name

"Clear" jButton
clicked on

"Confirm" button
clicked on

algorithm runs

"Print" jButton
clicked on

|

input collector ID v
(student ID) /
i clear al
> "Clear" jButton ;
" clickeld on previously

inputted data

"Print" jButton

clicked on print barcodes

Note: Later on after creating the flowchart, I decided that the ‘main,’ ‘input items,” ‘data’(for the jTable and searching and
sorting data), and ‘barcodes’ sections should be on separate jTabbedPanes as formatting is more clear that way (seen in the final
prototype below). Hence, aside from the mention of switching between two panels (there will be four), the main functionality of
the program stays the same and is represented in the flowchart.



Pseudocode:

Displaying data table of items:

For (int row = 0; row < itemsArray.length; row++){
Table[row][0] = item[row].getName();
Table[row][1] = item[row].getType();
Table[row][2] = item[row].getDate();
Table[row][3] = item[row].getName();
if (claimedStatus == true){

Table[4] = “Collected”;
} else {
Table[4] = “Uncollected”;

Changing the GUI display depending on the claimed status the user chooses:

boolean claimedStatus = true;

if(collectedRadioButton.isSelected()){
collectorNameTF.setVisible(true);
collectorIDTF.setVisible(true);
collectorNamejLabel.setVisible(true);
collectorIDjLabel.setVisible(true);

else{
collectorNameTF.setVisible(false);
collectorIDTF.setVisible(false);
collectorNamejLabel.setVisible(false);
collectorIDjLabel.setVisible(false);




Barcode generator:
Public void createBarcodes(Image code128Image, int numberOfBarcodes, Document doc){
if(numberOfBarcodes <= 7){
Create appropriate number of barcodes in first row
}else if (numberOfBarcodes > 7 and numberOfBarcodes <= 4)
generate a full 7 in first column
generate the appropriate number in second column
}else if((numberOfBarcodes > 7) && (numberOfBarcodes <= 14)){
generate two full columns
generate the appropriate number on the third column

Public void barcode(String fileName, String toEncode, int numberOfBarcodes){
Write pdf document doc;
Barcode128 code128 = new Barcode128();
code128.Encode(toEncode); // encode the string into a barcode
Image codel28Image = code128.makelmage();

createBarcodes(code128Image, numberOfBarcodes, doc);

Sorting Algorithm (for item type):

int n = counter;
boolean sorted = false;
while (!sorted) {
n--;
sorted = true;
for (int i=0; 1 < n; i++) {
if (itemsQueue[i].getltemType() > itemsQueue[i+1].getltemType()) {
switchElements(itemsQueue, 1, (i+1));
sorted = false;




Final Prototype:

J Main T Input ltems. T Data T Barcodes ]

Lost & Found Team's

Data Log And Barcode Generator

Description of Program:

This program consists of a data log and a barcode generator. The data log uses manual input to
keep track of lost items, allowing the user to input information such as date found, type of item,
etc. This can be done in the 'Input Items’ tab. Once inputted into the database, use the 'Data’ tab
to search and sort for items as well as create an excel spreadsheet of the data. Lastly, the barcode
generator in the 'Barcodes' tab is used to create barcodes based on date found.

Main | Input Items T DataT Barcodes]

Input New Items:

Item Name: Date found: =

Type: |Choose type... | ¥

(®) Collected Name of Collector:

Collector ID:

(U Hasn't been collected

L Add I Clear )




Testing Plan:




Item type combo
box input (in ‘Input
Items’ panel)

For example,
“Athletic Gear”

First and last options of
the combo box

If the user does not select
anything but the initial
option, the program will
select null as input.

No extreme since
combo box

Sort by combo box
(in ‘Data’ panel)

For example,
GGName’7

First and last options of
the combo box

If initial value “sort
by...” chosen, the
program will not sort

No extreme since
combo box

Search by combo

For example,

First and last options of

If initial value “search

No extreme since

box (in ‘Data’ “Name” the combo box by...” chosen, the combo box
panel) program will not search
Item name For example, Long strings (10 Numbers, symbols Very long strings (ex.
“Blue cap” characters or more) 20 characters), will be
accepted but wrapped
in the jTable
Date found For example, Oldest date (when item | If the user does not Dates in the future, will

01/02/22

collection is kept track
of) and current date

choose a date, the date
attribute will be set to
null.

not be accepted and an
error message will
show.

Claimed status

For example,
“Collected”

Only two options, so
those are the borders

Neither option is selected,
the item will not be added

Both options are
selected. This cannot
occur since the radio
button group is made.

Name of collector

For example,
“Charlie Parker”

Long strings (10
characters or more), will
still be accepted but text
wrapped in jTable

Numbers, symbols will
not be accepted. An error
message with show.

Very long strings (ex.
20 characters), will still
be accepted but text
wrapped in jTable

Collector ID

For example,
15638

Oldest ID kept track of
and most current ID
number given. However,
this is difficult to keep
track of since most
constantly update, so
will allow.

Non-integer inputs, an
error message will show.

Integers that are not
five digits (are not valid
ID numbers), an error
message will show.

(table not included in word count)

Word count: 288




