
Introduction

I programmed an application which is utilized to store and work with information about a
user’s Bollywood classes. The Netbeans IDE and a Java OOP approach is used to make a
GUI interface for the user to most easily.

Word Count: 39

Summary of Programming Techniques
1. Flag Values

a. Since the primitive type ‘int’ is only 32 bits, the phoneNumber would only take
up the range of values between -2,147,483,648 to 2,147,483,647

i. thus either a Long, BigInteger or String could be chosen as a variable
type.

2. User Defined Objects from a template class; eg “Student”
3. Parameter Passing
4. Default and Overload constructors

5. Encapsulation: Protecting private attributes of a class by using public ‘set’ methods to
work on those attributes, and using accessor ‘get’ methods to retrieve attributes.



6. Use of switch/case/break methods
a. Method returns a value
b. Switching the format of the

date, from the month being
an Integer, to something like
“Feb” or “Jul”, it is more
presentable to the user,
especially since month with
Integer ‘0’ is Jan, for
example, when January is
known for being Integer
month ‘1’

c. This implements the library
“JCalendar” which gives the
user a more friendly
interface:

i. Since the program
utilizes “Maven”, the
library is imported
from a repository,
with the specified
version found as a
dependency in the
pom.xml file

7. “Checker” methods to make sure information is properly inputted
a. Includes use of single and compound selection (if/else statements)



i. A huge part of database programs, such as this one, is checking to
make sure information is valid to halt errors from occurring.

ii. ‘triesToEnter’ is utilized, since some conditions are just characterized
as ‘Warning Messages’, giving the user a chance to bypass the
recommendation, if they click are to attempt to add the new Student

b. Use of try/catch to ensure the input value is a number.

c. Displays option pane to communicate to the user about the input error/
warning message



8. For loops. Eg, used to iterate through an array ---- copyemails credit link

The program would originally send an email to all the emails in the ‘emails’ list via Gmail on
an automated Chrome browser (use discussed in a later section)

However, due to the client using the email software “Outlook”, copying the emails onto the
systems clipboard in a simple copy/paste manner would provide the needed versatility for
the client to use the emails in their respective context.

9. Bubble Sort on an Array of Objects based on a Key Attribute

https://stackoverflow.com/questions/24702434/copy-text-to-clipboard-from-a-jtextfield-with-press-of-a-button


10. Binary Search for the name of a Student/Song

The following programming techniques will be discussed with examples in later sections:
11. Saving/Opening Files
12. Use of ADT’s
13. Arrays, Arrays of Objects, 2D Arrays
14. Nested loops
15. Converting a String to int, Character to int, int to String
16. Use of Event Listeners (key, action, mouse)
17. Concurrent Processing via Threads
18. GUI Elements (Tabs, TextFields, Buttons, etc…)

a. Use of different GUI Layouts.
19. Use of external libraries: JCalendar
20. Use of open source API’s for web automation: Selenium.

Word Count: 67 (bullet points excluded)



Structure of the Program

The MainGUI class is the central feature of the program, using OOP. It is dependent and
thus uses and collaborates with the rest of classes seen above. It also contains all the
Java Swing Tools allowing the design interface to function properly.

BollywoodClass, Song, and Student are all “template” classes which MainGUI calls and
makes new instances of to store and display. The SortingAndSearching class is used to sort
by respective Student and Song elements on the table, as well as search for Student/Song
name. The Help class is a JFrame window associated with the MainGUI by composition,
containing user documentation about each tab. Moreover, the Song class aggregates the
Student class, since a Song has an ArrayList of students who have completed it.

The BollywoodClass class has a Song (aggregation). Overall, using OOP allows for the
program to be more easily debugged, reusable, visualized, managed, and extensible, with
relationships between the classes making sense in a logical manner.

Word Count: 160



Web Automation Algorithms Explained

Multithreading allows for code methods to be executed synchronously rather than
sequentially. The biggest and easiest to see implementation of this is in the main, where a
new instance of “Runnable” is created, which is inherited by the class “Thread”.

This allows for the mainGUI user interface to be responsive meaning the Java Swing tools
respond to events in real time. In my case, a Thread is used for two reasons:

1. To start the process to use an automated Chrome browser, extracting emails from
results of a ‘survey’ which the user’s students would use to sign up for up-coming
Bollywood classes.

2. Updating a progress bar each time another email has been ‘extracted’, to let the user
see the process update.

Prerequisite Understanding.

- The “waitSec()’ method is used to ensure all web elements are loaded before the
program attempts to move on to the next step of code.

- Positives: limits errors and prevents inconsistencies due to network lag, slow
internet connection, etc…

- Negatives: potentially adds unnecessary ‘extra’ waiting time



- WebElements can be searched through different ‘locators’ on “Inspect”

- Name tags, CSS Class, and shown above; outerHTML, selector, JS path,
styles

- The one that is used throughout my program is “Full XPath”, which is used to
navigate through the HTML/XML structure of the page.

- Why? Provides a dynamic way to search for an element on the web
page, allowing flexibility for changes in code by the developer.

Psuedocode for ‘Extract Emails’

Initial Components:

Make a new object ChromeDriver type WebDriver (opens chrome)
Go to surveyLink using search bar
Log into survey monkey through Gmail (Figure1)



Save the number of total students who responded to the survey (Figure2)
- Used for updating progress bar

Start progress bar thread in mainGUI (Figure4)

Loop to Get all Valid Emails:

While the web page is not yet to the first respondent (Figure5)
Check if the class date chosen by the student corresponds to the class date on the
MainGUI chosen by the user (Figure6)

Use XPath, to find email address
(Note for this part, the XPath is inconsistent by survey monkey for each respondent,
shown by the change in one number, and so each time, the program will attempt to
look for the one element via 2 XPath’s to save the email address, and then add it to
the ‘emails’ list)

Add 1 to progress counter
Click onto the next respondent

(when all respondents have been checked…)
Set progress bar to full (extraction completed)
Return the Default List Model ‘emails’ to update the JList on the MainGUI.

Figure 1



Figure 2

At this point we are on the ‘Individual Responses’ page shown on Figure3, with all the
elements the program will be working with and looking for.

Figure 3

Total respondents is the number “X” at the end of “Respondent #X”. This is sent back to the
progress bar to set the maximum value of the progress bar. Using progressCounter, the
progress bar will update by a fraction of the maximum value each time. In the example of
Figure3, the maximum would be ‘6’, and everytime the progress counter changes (by
‘progressCounter++’), the progress bar would be filled by ⅙ more.



Figure 4

Note that a thread is used, since the update for progress bars would have been put on a
stack of processes, waiting for the Selenium thread to finish, rather than updating
concurrently and in live time.

Figure 5

Figure 6

Data Structures Used
ArrayList used to store new instances of the objects from the template classes (below),
containing the attributes in the overload constructor of each class.



Linked lists are utilized, with each node having a payload of a String containing a coordinate
of a grid, discussed later.

ADT’s allow data to be kept in a sequential order, accessed via an index, as well as grow
dynamically in size and thus is memory efficient compared to a static array which is seldom
used.

However, an array of Strings is used as the model for combo boxes, since the first element
displayed explains the use of the particular combo box.

Also, there is use of a 2D array, array of arrays, of objects; a JButton and JToggleButton 2D
array, used to emulate and store the grid boxes of a 15 x 15 size grid.

Word Count: 319 (excludes bullet points)

Main Unique Algorithms
Explanation of Dance Formation tab:
The toggle button on the bottom left toggles between ‘creating’ and ‘choosing’ a dance
formation, each containing different actions:



When you first go on the tab, the “createGrid()” method is called.

A JPanel is created within the tabbed pane, with a Grid Layout manager. There is a
specified number of rows and columns (15x15). This layout is suitable for the users purpose
because:

1. The grid will represent a stage, of which each toggle button within it represents a
student, and thus a dance formation can be created.

2. The GridLayout container divides its space into equal-sized rectangles, with each
component (TButton) placed in a single rectangle.

Pseudocode for createGrid()

Remove all components from GridPanel
Set layout to GridLayout of dimension 15 x 15
Loop through the rows in GridPanel AND ‘jtogglegrid’ 2D array of JToggleButtons

Loop through the columns in GridPanel AND ‘jtogglegrid’ 2D array of JToggleButtons
Initialize a new instance of JToggleButton in the 2D array
Set preferred, max, minimum size to 40,40
Note that the height of the buttons will actually be set automatically to fill the
panel, however it is the width that is important to be set.
Add action listener
Add the instance of the button to the container (GridPanel)

See the result below.



Now, the action listener will wait for the user to click the buttons.



Originally, I was under the notion that I could use the action listener and simply save the
value of the variables ‘row’ and ‘col’, dictating which button had been pressed. However, I
came to the realization that since the original nested loops had already been completed, the
value of ‘row’ and ‘col’ would have already been 15.

So, after trial and error, I found that I could loop through all the jtogglebuttons again, each
time an action was performed, and compare it to e.getSource() → gets the object
component of which the event occurred. Then, if the respective button and source
matched, its ‘coordinate’ was saved in a Linked List in the format → row + “,” + col such as

“14, 7” OR “1, 2” OR “9, 13”

Complications with this step arised too, since if the user had already pressed the button,
toggling it ‘on’, then pressing the button again would toggle it ‘off’ on the GUI, yet unwillingly
add another instance of the same button to the Linked List.

So, a ‘checker’ was added checking the existing clicked buttons in ‘selectedGridButtonList’
to make sure that there was no overlap. If there was, that element would be removed since
the user had unselected it from the formation.



When the ‘Click Here to Save Dance Formation’ button is clicked:

● The reason a LinkedList of Strings was utilized, rather than creating another array of
toggle buttons, was for the ease of saving files later.

○ Since the FileWriter class utilized can only write characters from a String, it
would easily be able to save the coordinates of each and every button in
each respective formation, ready to be opened and interpreted by a
BufferedReader.

Choosing an Existing Dance Formation:

The spinner will always be set to the default value 0; showing all formations

Pseudo-code for Displaying Existing Formations:

Previous button visibility set false
If formations (ArrayList of LinkedLists) is empty

Go back to ‘creating’ a dance formation
Communicate error with user via JOptionPane

Else (not empty…)
addGrids(0) method (Pseudo-code found below)
next Button visibility is false;

Pseudo-code for addGrids() method: → takes in index of formation which is wanted to be
displayed

Remove all components from panel
Loop through the rows in GridPanel AND ‘jbuttongrid’ 2D array of JButtons

Loop through the columns in GridPanel AND ‘jbuttongrid’ 2D array of JButtons
Note that JButtons is used rather than JToggleButtons since this is simply for
displaying and there should be no user interaction with the buttons
Make new instance of JButton in the 2D array
Set preferred, min, max size to dimension 40,40
Assume visibility is false
Loop through all coordinates in String format of index of formation

(CHECKER METHOD FOR WHETHER ROW/COL CAN BE FOUND)
SEE FIGURE 7 FOR CLEAR DIAGRAM EXPLANATION

Set visibility true of conditions are true
Add the instance of the button in 2D array to GridPanel



Figure 7

I was dumbfounded when after implementing all this, I was still having issues with buttons
being shown where they shouldn't have been. To find the root cause of the problem, I
implemented…

1. A print line every time a button was set visible
2. A counter which would allow only a limited number of buttons to be set visible,

depending on the size of the formation (# of selected buttons)
3. Removing adding any buttons at all, to see that after all the components had initially

been removed, if any buttons remained. I found none remained.



None of these ended up fixing the issue.

After lots of time attempting to fix this issue, I found that when I was on the program, then
clicked to another application such as Chrome or Netbeans (instead of the Jar), and came
back, the problem VANISHED. I then figured out that if I switched tabs from the “Dance
Formation” to any other tab and then back, it solved the problem as well.

So the last two lines of code implemented which made the algorithm work can be seen
below:

Despite the REASON for the issue not being apparent I came up with 1 of 2 conclusions:
1. Netbeans was having a glitch, solved simply by a “turn off, turn on” type of method
2. The IDE was attempting to save memory, because I found that the buttons that were

not supposed to show and did remain, were only BELOW all the buttons that were
supposed to be there, on the GridLayout.

a. Therefore, the assumption is that the program didn't do a full “garbage
collection” of the buttons after all the elements in the Linked List that were
supposed to be there were added.

Lastly, the spinner in the bottom right hand corner of the GUI can be changed to show only
formations with a certain number of selected grids/students.

The difference in the algorithm can be seen below:

● Then instead of the method addGrids() taking the parameter ‘j’ (simply a counter,
starting at 0), the addGrids() method takes ‘found.get(j)’, storing the indexes in
formations ArrayList where the .size() == value of the spinner.

So, the next/prev button works by simply adding / subtracting 1 from the counter ‘j’

Word Count: 385

Code for Saving/Opening Files (see example below):



Reading the File “Song.txt” is quite complicated because of the intricate relationship between



User Interface/GUI Work
Key features of Java Swing components:

- TextFields
- TextAreas
- Buttons, Toggle Buttons
- Combo Box
- Check Box
- Menu Items
- Labels
- Spinner
- Tabbed Pane
- Popup Menu
- Progress Bar
- Date Chooser (fromJCalendar library)
- Table, List
- Scroll Pane

Key Layouts Utilized:
- Absolute Layout

- Provides needed limited flexibility for elements not to shift around
- Grid Layout

- Used for dance formations
Other:

- Custom refresh button (refreshing inputting information and JTables)
- Remove button to remove element from Student/Song JTable





Software Tools Used
This program is appropriately created on the popular Integrated Development Environment
(IDE) Netbeans, which contains a plethora of convenient features and GUI tools, boosting
my efficiency and productivity. Moreover, it requires a suitable level of Java understanding
for a high schooler, and packs a compiler, spell checker and debugger all into one.

Total Word Count: 1,093


