Introduction

| programmed an application which is utilized to store and work with information about a
user’s Bollywood classes. The Netbeans IDE and a Java OOP approach is used to make a
GUI interface for the user to most easily.

Word Count: 39

Summary of Programming Techniques

1. Flag Values
private String name = "not set yet";
private String email = "not set yet";
private String location = "not set yet";
private String timeZone = "not set yet";
private String phoneNumber = "not set yet";
private String notes = "not set yet";

a. Since the primitive type ‘int’ is only 32 bits, the phoneNumber would only take
up the range of values between -2,147,483,648 to 2,147,483,647
i.  thus either a Long, Biglnteger or String could be chosen as a variable

type.

2. User Defined Objects from a template class; eg “Student”
3. Parameter Passing
4. Default and Overload constructors

public Student(){

}
public Student(String name, String email, String location, String timeZone, String phoneNumber, String notes){

this.name = name;

this.email = email;
this.location = location;
this.timeZone = timeZone;
this.phoneNumber = phoneNumber;
this.notes = notes;

5. Encapsulation: Protecting private attributes of a class by using public ‘set’ methods to
work on those attributes, and using accessor ‘get’ methods to retrieve attributes.

public void setName(String name){ public String getName(){
this.name = name; return name;

} }



6. Use of switch/case/break methods ~ Public String getMonthAndDay (Date date){

Method ret | String month = "";
a. lethodreturns a vaiue switch(date.getMenth()){
b. Switching the format of the case 0:
date, from the month being month = "Jan";
an Integer, to something like break;
“Feb” or “Jul”, it is more case 1: e
presentable to the user, E?:_:k-_ reb’
especially §|nce month with case 2:
Integer ‘0’ is Jan, for month = "Mar";
example, when January is break;
known for being Integer case 3:
month ‘1’ month = "Apr";
c. This implements the library Casebfak;
“JCalendar” which gives the month = "May";
user a more friendly break;
interface: case 5:
i.  Since the program month = "Jun";
utilizes “Maven”, the break;
library is imported case 6:
y p‘ month = "Jul";
from a repository, break;
with the specified case 7:
version found as a month = "Aug";
dependency in the break;
pom.xml file case 8:
month = "Sep";
April ¢ 2021 % break;
Sun Mon Tue Wed Thu Fri Sat case 9:
. , ; month = "0Oct";
break;
4 5 6 7 8 9 10
case 10:
11 12 13 14 15 16 17
18 19 20 21 22 23 24 month = "NOV";
break;
25 26 27 28 29 30 case 11:
month = "Dec";
break;
}

return month + " " + date.getBate();

7. “Checker” methods to make sure information is properly inputted
a. Includes use of single and compound selection (if/else statements)

if(correctStudentInfo()){
triesToEnter = 0;
students.add(new Student(StudentNameTF.getText(), StudentEmailTF.getText(), StudentlLocationTF.getText(), StudentTimeZ

—~ ra P P ~ ro. f . . v an



public boolean correctStudentInfo(){

if(StudentNameTF.getText().length() < 2){
JOptionPane.showMessageDialog(this, "The Student Name must be filled and at least 2 characters long. Please re-enter the followi
return false;

}

else if(isNumeric(StudentPhoneNumberTF)){
JOptionPane.showMessageDialog(this, "Please input an integer for the student phone number", "Error Message", HEIGHT);
return false;

¥

else if(StudentNameTF.getText().length() > 30){
triesToEnter++;
JOptionPane. showMessageDialog(this, "The student name seems a bit long... Consider editing it by only writing a first name", "Wa
return false;

}

if(StudentEmailTF.getText().equals("")){
JOptionPane. showMessageDialog(this, "Please make sure the student email is not left blank", "Error Message", HEIGHT);
return false;

}

if(!StudentEmailTF.getText().substring(StudentEmailTF.getText().length()-4).equals(".com") && triesToEnter == @){
triesToEnter++;
JOoptionPane. showMessageDialog(this, "Please check to make sure the email is valid before re-entering”, "Warning Message", HEIGHT
return false;

}

if(StudentPhoneNumberTF.getText().substring(@, 1).equals("9") && triesToEnter == 0){
triesToEnter++;
JOptionPane. showMessageDialog(this, "We reccomend that you add the country code to the phone number!", “Warning Message", HEIGHT
return false;

}

if(StudentPhoneNumberTF.getText().length() < 7 || StudentPhoneNumberTF.getText().length() > 15){

JOptionPane. showMessageDialog(this, "Please make sure the phone number is in between 7 and 15 characters, inclusive", “Error Mes
return false;

if(!StudentTimeZoneTF.getText().substring(®, 3).equalsIgnoreCase("GMT") && triesToEnter==0){
triesToEnter++;
JOptionPane.showMessageDialog(this, "Please make sure you are using the correct timezone format: GMT", "Error Message", HEIGHT);
return false;

¥

return (StudentNameTF.getText().length() > 1 && StudentNameTF.getText().length() < 31 && !StudentEmailTF.getText().equals("") && Stu

i.  Ahuge part of database programs, such as this one, is checking to
make sure information is valid to halt errors from occurring.

ii. ‘triesToEnter’ is utilized, since some conditions are just characterized
as ‘Warning Messages’, giving the user a chance to bypass the
recommendation, if they click are to attempt to add the new Student

b. Use of try/catch to ensure the input value is a number.

public boolean isNumeric(JTextField tf){

if (tf.getText() == null) {
return false;
}
try{
int d = Integer.parseInt(tf.getText());
}

catch (NumberFormatException nfe){
return false;

}

return true;

c. Displays option pane to communicate to the user about the input error/
warning message



Warning Message [ ] Error Message

Please check to make sure the email is valid before re-entering Please input an integer for the Song BPM

8. For loops. Eg, used to iterate through an array ---- copyemails credit link
public void copyEmails (){

String allEmails = "'";
for(int i = @; i < EmailAutomation.emails.size(): i++){
if(i == EmailAutomation.emails.size()-1){
allEmails = allEmails + EmailAutomation.emails.get(1i);
}
else{
allEmails = allEmails + EmailAutomation.emails.get(i) + ", ";
}

}

StringSelection stringSelection = new StringSelection (allEmails);
Clipboard clpbrd = Toolkit.getDefaultToolkit().getSystemClipboard();
clpbrd.setContents(stringSelection, null);

¥

The program would originally send an email to all the emails in the ‘emails’ list via Gmail on
an automated Chrome browser (use discussed in a later section)

However, due to the client using the email software “Outlook”, copying the emails onto the
systems clipboard in a simple copy/paste manner would provide the needed versatility for
the client to use the emails in their respective context.

9. Bubble Sort on an Array of Objects based on a Key Attribute
I@ SortingAndSearching.java

public class SortingAndSearching {

public void sortByStudentNameAZ(ArrayList<Student> students){
int n = students.size();
boolean sorted = false;
while (!sorted) {
n--; //It is the n which will result in one less comparison happening each outer pass;
//whereas, with the first bubble sort we could use the 'pass' variable used for the for loop.
sorted = true;
for (int i=@; i < n; i++) {
if (students.get(i).getName().compareToIgnoreCase(students.get(i+1).getName()) > @) {
Student temp = students.get(i);
students.set(i, students.get(i+1));
students.set(i+1, temp);
sorted = false; //as in the second bubble sort, if swapping happens we'll want to continue, and so
//with sorted re-set to false again, the while loop continues


https://stackoverflow.com/questions/24702434/copy-text-to-clipboard-from-a-jtextfield-with-press-of-a-button

10. Binary Search for the name of a Student/Song

public int binarySearchStudentName (ArrayList<Student> students, String key){
int low = @;
int high = students.size() -1;

while{low <= high){ // Keep on looking for the key until the low and the high cross
int mid = (low + high) / 2; // each other - if that does happen, it means the key was not found.
if(students.get(mid).getName().compareToIgnoreCase(key) == @)
return mid; // This is what will happen if/when we find the key in|the array.
else if(students.get(mid).getName().compareToIgnoreCase(key) < @)
low = mid + 1; // Since the arr[mid] value is less than the key, we can eliminate
else // looking at the left side of the remaining elements
high = mid -1; // i.e. the arr[mid] value is greater than what we are looking for
} // so we can eliminate looking at the right side of the remaining elements
return -1;

}

private void SearchSongsTFKeyReleased (java.awt.event.KeyEvent evt) {

// TODO add your handling code here:

if(evt.getKeyChar() == "\n'){
SortingAndSearching searchForSong = new SortingAndSearching();
String searchBar = SearchSongsTF.getText();
int found = searchForSong.binarySearchSongName(songs, searchBar);
if(found = -1){

SearchSongsTF.setText("Element Not Found");

e

else{
makeListEmpty(List0OfStudentsT);
List0fSongsT.setValueAt(songs.get(found).getSongName(), @, @);
List0fSongsT.setValueAt(songs.get(found).getMovieName(), @, 1);
List0fSongsT.setValueAt(songs.get(found).getSongBPM(), @, 2);
List0fSongsT.setValueAt(songs .get(found).getDateOfPerformance(), @, 3);

e

}

The following programming techniques will be discussed with examples in later sections:
11. Saving/Opening Files
12. Use of ADT’s
13. Arrays, Arrays of Objects, 2D Arrays
14. Nested loops
15. Converting a String to int, Character to int, int to String
16. Use of Event Listeners (key, action, mouse)
17. Concurrent Processing via Threads
18. GUI Elements (Tabs, TextFields, Buttons, etc...)
a. Use of different GUI Layouts.
19. Use of external libraries: JCalendar
20. Use of open source API’s for web automation: Selenium.

Word Count: 67 (bullet points excluded)



Structure of the Program

BollywoodClass.java
EmailAutomation.java
Help.java

MainGUl. java

Song.java
SortingAndSearching.java
Student.java

& gﬂ@j@]@] NEY

The MainGUI class is the central feature of the program, using OOP. It is dependent and
thus uses and collaborates with the rest of classes seen above. It also contains all the
Java Swing Tools allowing the design interface to function properly.

SearchSongsTF = new javax.swing.JTextField();

SortingSongsCB = new javax.swing.JComboBox<>();

RefreshButton2 = new javax.swing.JButton();

InputSongOKButton = new javax.swing.JButton();

DateOfPerformanceChooser = new com.toedter.calendar.JDateChooser();

MovieNameTF = new javax.swing.JTextField();

StudentTimeZoneTF = new javax.swing.JTextField();

StudentPhoneNumberTF = new javax.swing.JTextField();

SongBPMTF = new javax.swing.JTextField();

AddSongToStudentCB = new javax.swing.JComboBox<>();

AddSongToStudentButton = new javax.swing.JButton();

RefreshButton = new javax.swing.JButton();

BollywoodClass, Song, and Student are all “template” classes which MainGUI calls and
makes new instances of to store and display. The SortingAndSearching class is used to sort
by respective Student and Song elements on the table, as well as search for Student/Song
name. The Help class is a JFrame window associated with the MainGUI by composition,
containing user documentation about each tab. Moreover, the Song class aggregates the
Student class, since a Song has an ArrayList of students who have completed it.

Sl @2 Soir) @ Wisk et Gt Choose Student to Add Song g public void addCompletedStudents (Student student, int s){

Adding Student to Song: Add ) MainGUI. songs.get(s).completedStudents.add(student);

The BollywoodClass class has a Song (aggregation). Overall, using OOP allows for the
program to be more easily debugged, reusable, visualized, managed, and extensible, with
relationships between the classes making sense in a logical manner.

Word Count: 160



Web Automation Algorithms Explained

Multithreading allows for code methods to be executed synchronously rather than
sequentially. The biggest and easiest to see implementation of this is in the main, where a
new instance of “Runnable” is created, which is inherited by the class “Thread”.

java.awt.EventQueue.invokeLater (new Runnable() {
public void run() {
mainGUI.setVisible(true):

}
});

This allows for the mainGUI user interface to be responsive meaning the Java Swing tools
respond to events in real time. In my case, a Thread is used for two reasons:

1. To start the process to use an automated Chrome browser, extracting emails from
results of a ‘survey’ which the user’s students would use to sign up for up-coming
Bollywood classes.

2. Updating a progress bar each time another email has been ‘extracted’, to let the user
see the process update.

private void EmailExtractionBMouseReleased(java.awt.event.MouseEvent evt) {

Thread seleniumMethod = new Thread(() —> {
EmailAutomation. setProperty();
EmaillList.clearSelection();
try {
EmailAutomation. ExtractEmails(SignUpSheetLinkTF.getText(), ClassDateCB.getSelectedItem().toString(),
SurveyEmailTF.getText(), SurveyPasswordTF.getText());
} catch (InterruptedException ex) {
ex.printStackTrace();
}
Emaillist.setModel(EmailAutomation.emails);

1)
seleniumMethod.start();

public static void setProperty(){
System.setProperty('"webdriver.chrome.driver", "/Users/16939/Desktop/MyFirstGUIProject/Nest/chromedriver");
b

Prerequisite Understanding.

- The “waitSec() method is used to ensure all web elements are loaded before the
program attempts to move on to the next step of code.
- Positives: limits errors and prevents inconsistencies due to network lag, slow
internet connection, etc...
- Negatives: potentially adds unnecessary ‘extra’ waiting time



public static DefaultListModel ExtractEmails(String surveylLink, String classDate, String surveyEmail, String surveyPassword) throws InterruptedException{
CLASSDATE = classDate;
WebDriver driver = new ChromeDriver();
driver.get(surveylLink);
logIntoSurveyMonkey (driver, surveyEmail, surveyPassword);
waitSec (15);
getTotalRespondentNum(driver);
waitSec(2);
MainGUI.mainGUI .threadProgressBar().start();
while (notRespondentl(driver)){
if(checkClassDate(driver)){
String emailAnswerl = driver.findElement(By.xpath("/html/body/div[2]/div[3]/div/table/tbody/tr/td[2]/div[3]/div[3]/div/div/div[3]/div[2]/div/
+ "div[2]/div/div([1]/div/div([2]/div/p")).getText();
if(!emailAnswerl.equals("")){
System.out.println(emailAnswerl);
emails.addElement (emailAnswerl);
}
String emailAnswer2 = driver.findElement(By. xpath("/html/body/div[2]/div[3]/div/table/tbody/tr/td[2]/div[3]/div[3]/div/div/div[2]/div[2]/div/
+ "div[2]/div/div[1]/div/div([2]/div/p")).getText();
if('emailAnswer2.equals("")){
System.out.println(emailAnswer2);
emails.addElement (emailAnswer2);
}
}
progressCounter++;
waitSec (5);
waitSec(5);
driver.findElement(By.xpath (" /html/body/div[2]/div[3]/div/table/tbody/tr/td[2]/div[2]/div/div/all]l")).click();
}
MainGUI.mainGUT .ExtractionProgressBar.setValue(MainGUI.mainGUI .ExtractionProgressBar.getMaximum());
return emails;

public static void waitSec(int seconds) throws InterruptedException{
TimeUnit.SECONDS.sleep(seconds);
by

- WebElements can be searched through different ‘locators’ on “Inspect’

Copy Cut element
Search Google for "Aggregation” Copy element
Print...

() AdBlock — best ad blocker > Copy outerHTML

¢4 Read aloud selected text Copy selector
Copy JS path
napect Copy styles
Speech > Copy XPath
Services » Copy full XPath

- Name tags, CSS Class, and shown above; outerHTML, selector, JS path,
styles
- The one that is used throughout my program is “Full XPath”, which is used to
navigate through the HTML/XML structure of the page.
- Why? Provides a dynamic way to search for an element on the web
page, allowing flexibility for changes in code by the developer.

Psuedocode for ‘Extract Emails’
Initial Components:
Make a new object ChromeDriver type WebDriver (opens chrome)

Go to surveyLink using search bar
Log into survey monkey through Gmail (Figure1)



Save the number of total students who responded to the survey (Figure2)
- Used for updating progress bar
Start progress bar thread in mainGUI (Figure4)

Loop to Get all Valid Emails:

While the web page is not yet to the first respondent (Figure5)
Check if the class date chosen by the student corresponds to the class date on the
MainGUI chosen by the user (Figure6)
Use XPath, to find email address
(Note for this part, the XPath is inconsistent by survey monkey for each respondent,
shown by the change in_one number, and so each time, the program will attempt to
look for the one element via 2 XPath’s to save the email address, and then add it to
the ‘emails’ list)
Add 1 to progress counter
Click onto the next respondent
(when all respondents have been checked...)
Set progress bar to full (extraction completed)
Return the Default List Model ‘emails’ to update the JList on the MainGUI.

Figure 1
public static void logIntoSurveyMonkey (WebDriver driver, String username, String password) throws InterruptedException{
waitSec(5);
driver.findElement (By.xpath (" /html/body/div[2]/div[2]/div/div/div[2]/div[1]/div[2]/div/div/p[1]/a")).click();
waitSec(3);

driver.findElement (By.xpath (" /html/body/div[1]/div[1]l/div[2]/div/div[2]/div/div/div[2]/div/div[1]/div/form/span/"
+ "section/div/div/div[1]/div/div[1]/div/div[1]/input")).sendKeys(username + Keys.ENTER); //Putting in email
waitSec(3);
driver.findElement (By.xpath (" /html/body/div[1]/div[1]l/div[2]/div/div([2]/div/div/div([2]/div/div[1]/div/form/span/"
+ "section/div/div/div[1]/div[1]/div/div/div/div/div[1]/div/div[1]/input")).sendKeys (password + Keys.ENTER);
}

Log in to your account

G Sign in with Google

G Sign in with Google

Enteryour username &
I Signin A ——
Enter your password to continue to SurveyMonkey e 020e bt

Remember me Email or phone

Enter your password
Forgot username or password?
Forgot email?

Log in with SSO [J show password

LOGIN ) . - ;
To continue, Google will share your name, email address,
language preference, and profile picture with To continue, Google will share your name, email address,
or ) .
SurveyMonkey. Before using this app, you can review language preference, and profile picture with
SurveyMonkey's privacy policy and terms of service. SurveyMonkey. Before using this app, you can review
Log in with your Office 365, LinkedIn, Facebook, Google, or SurveyMonkey’s privacy policy and terms of service.

Apple Account

Create account Next
£} a in] [ Forgot password?



Figure 2

public static String getTotalRespondentNum(WebDriver driver){
String respondentNumber = driver.findElement(By.xpath("/html/body/div[2]/div[3]/div/table/tbody/tr/td[2]/div[2]/div/a")).getText();
System.out.println(respondentNumber);
MainGUI. respondentsTotal = Integer.parselInt(respondentNumber.substring(respondentNumber.length()-1));
return respondentNumber.substring(respondentNumber.length()-1);

At this point we are on the ‘Individual Responses’ page shown on Figure3, with all the
elements the program will be working with and looking for.

Figure 3
RESPONDENTS: 6 of 6 This page is found via
‘Analyze Results’ > ‘Individual Responses’
QUESTION SUMMARIES INSIGHTS AND DATA TRENDS INDIVIDUAL RESPONSES

¥y ———_ Thisis the latest

respondent; the first one
Respondent #6 ¥ that shows up when you go
on the survey page

“Previous” button

COMPLETE Edit Delete Export

Collector: Social Media Post 1 (Facebook Link)
Started: Monday, February 15, 2021 1:06:57 PM
Last Modified: Monday, February 15, 2021 1:07:05 PM
Time Spent: 00:00:07
IP Address: 103.41.84.100
Page 1
Q1

What is your email address

wallet@gmail.com <4——— After the class date below MATCHES the
class date on the MainGUI, the email is extracted
Q2

What class do you want to attend?

Feb 16

Total respondents is the number “X” at the end of “Respondent #X”. This is sent back to the
progress bar to set the maximum value of the progress bar. Using progressCounter, the
progress bar will update by a fraction of the maximum value each time. In the example of
Figure3, the maximum would be ‘6’, and everytime the progress counter changes (by
‘progressCounter++’), the progress bar would be filled by % more.



Figure 4

public Thread threadProgressBar() {
Thread t1 = new Thread(() —> {
ExtractionProgressBar.setMaximum( respondentsTotal };
while(ExtractionProgressBar.getValue() != ExtractionProgressBar.getMaximum(}){
ExtractionProgressBar.setValue(EmailAutomation.progressCounter);
System. out.println("Max: " + respondentsTotal);
System. out.println("Current: " + EmailAutomation.emails.getSize());
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException ex) {
ex.printStackTrace();
}
}
});
return t1;

}

Note that a thread is used, since the update for progress bars would have been put on a
stack of processes, waiting for the Selenium thread to finish, rather than updating
concurrently and in live time.

Figure 5

public static boolean notRespondentl(WebDriver driver) throws InterruptedException{
waitSec(15);
String respondentNumber = driver.findElement (By.xpath("/html/body/div[2]/div[3]1/div/table/tbody/tr/td[2]/div[2]/div/a")).getText();
if(!respondentNumber.equalsIgnoreCase(""Respondent #1")){
return true;

}
else{

return false;
}

Figure 6

public static boolean checkClassDate(WebDriver driver){
if(driver.fin ent(By.xpath("/html/body/div[2] /div[3]/div/table/tbody/tr/td[2] /div[3]/div[3]/div/div/"
+ "di div(2]/div/div([2]/div/div[2]/div/div[2]/div/ul/1li/span")).getText().equals (CLASSDATE)){
return trues

} checking BOTH XPath’s

else if(drivern~fipdElement(By.xpath("/html/body/div[2]/div[3]/div/table/tbody/tr/td[2]/div[3]/div[3]/div/div/"
+ “dig:ii;div[2]/div/div[2]/div/div[2]/div/div[2]/div/ul/li/5pan”)).QEtText().equals(CLASSDATE)){
return tr
}
else{
return false;
}

Data Structures Used

ArrayList used to store new instances of the objects from the template classes (below),
containing the attributes in the overload constructor of each class.
private ArrayList<BollywoodClass> classes = new ArrayList<BollywoodClass>();

private ArrayList<Student> students = new ArrayList<Student>();
public static ArraylList<Song> songs = new ArrayList<Song>();



Linked lists are utilized, with each node having a payload of a String containing a coordinate
of a grid, discussed later.
public LinkedList<String> selectedGridButtonList = new LinkedList<String>();

ADT'’s allow data to be kept in a sequential order, accessed via an index, as well as grow
dynamically in size and thus is memory efficient compared to a static array which is seldom
used.

However, an array of Strings is used as the model for combo boxes, since the first element
displayed explains the use of the particular combo box.

String [] studentsArray = new String[students.size()+1];

tudentsArray[@] = "Choose Student to Add Song"; First Element that wi

5 - ) y . - 9 i «— Appear in the Combo Box
for(int i = 1; i < studentsArray.length; i++){

studentsArray[i] = students.get(i-1).getName();

1 *=— Copying elements from ArrayList to array
AddSongToStudentCB.setModel({new javax.swing.DefaultComboBoxModel(studentsArray));
b

Also, there is use of a 2D array, array of arrays, of objects; a JButton and JToggleButton 2D
array, used to emulate and store the grid boxes of a 15 x 15 size grid.

public static JButton[][] jbuttongrid = new JButton[15][15];
public static JToggleButton[][] jtogglegrid = new JToggleButton[15][15];

Word Count: 319 (excludes bullet points)

Main Unique Algorithms

Explanation of Dance Formation tab:
The toggle button on the bottom left toggles between ‘creating’ and ‘choosing’ a dance
formation, each containing different actions:

Create a New Dance Formation | (SiiseAINSRGDSREEIEGHHANGHID

private int j = 0;

private void CreateOrChooseExisitingTBItemStateChanged (java.awt.event.ItemEvent evt) {
if(CreateOrChooseExisitingTB.isSelected()){
NumberOfStudentsSpinner.setValue(Integer.value0f(0));
((DefaultEditor) NumberOfStudentsSpinner.getEditor()).getTextField().setText("0");
System.out.println("Formation Size: "+formations.size());
j=0;
prevButton.setVisible(false);
if(!formations.isEmpty()){
addGrids(j);
AllLabel.setVisible(true);
FormationsLabel.setVisible(false);
danceFormationSaveButton.setVisible(false);
NumberOfStudentsLabel.setVisible(true);
NumberOfStudentsSpinner.setVisible(true);
nextButton.setVisible(false);
}
else{
JOptionPane. showMessageDialog(this, “There are no formations to be displayed. "
+ ”Flease create a new formation first", "Error Message", HEIGHT);
CreateOrChooseExisitingTB.setSelected(false);
AllLabel.setVisible(false);

if(formations.size()-1>j){
nextButton.setVisible(true);

}

else{
FormationsLabel.setVisible(true);
GridPanel.setVisible(true);
AllLabel.setVisible(false);
createdGridAlready = 0;
createGrid();
danceFormationSaveButton.setVisible(true);
NumberOfStudentsLabel.setVisible(false);
NumberOfStudentsSpinner.setVisible(false);
prevButton.setVisible(false);
nextButton.setVisible(false);



When you first go on the tab, the “createGrid()” method is called.

public void createGrid(){
while(GridPanel.getComponentCount()!=0)
GridPanel.remove(0);
GridPanel.setLayout(new GridLayout(15,15));
addButtons(GridPanel);

public void addButtons(Container container){
for(int row = 0; row < 15; row++){
for(int col = 0; col < 15; col++){
jtogglegrid[row] [col] = new JToggleButton();
jtogglegridlrow] [coll.setPreferredSize(new Dimension(40,40));
jtogglegridlrow] [col]l.setMaximumSize(new Dimension(40,40));
jtogglegrid[row] [col].setMinimumSize(new Dimension(40,40));
jtogglegrid[row] [col]l.addActionListener(this);
container.add(jtogglegrid([row] [coll);

A JPanel is created within the tabbed pane, with a Grid Layout manager. There is a
specified number of rows and columns (15x15). This layout is suitable for the users purpose
because:
1. The grid will represent a stage, of which each toggle button within it represents a
student, and thus a dance formation can be created.
2. The GridLayout container divides its space into equal-sized rectangles, with each
component (TButton) placed in a single rectangle.

Pseudocode for createGrid()

Remove all components from GridPanel
Set layout to GridLayout of dimension 15 x 15
Loop through the rows in GridPanel AND ‘jtogglegrid’ 2D array of JToggleButtons
Loop through the columns in GridPanel AND ‘jtogglegrid’ 2D array of JToggleButtons
Initialize a new instance of JToggleButton in the 2D array
Set preferred, max, minimum size to 40,40
Note that the height of the buttons will actually be set automatically to fill the
panel, however it is the width that is important to be set.
Add action listener
Add the instance of the button to the container (GridPanel)

See the result below.



Inputting Information  Class Calendar  Email Extraction

Add New Formations by Selecting Grid Boxes

Create a New Dance Formation Click Here to Save Dance Formation

Now, the action listener will wait for the user to click the buttons.

@0verride
public void actionPerformed (ActionEvent e) {
boolean selected = true;
for(Integer j = @; j < 15; j++){
for(Integer k = 0; k < 15; k++){
if (e.getSource() == jtogglegrid[j][k]){
if(selectedGridButtonList.size()>0){
for(int check = @; check < selectedGridButtonList.size(); check++){
if(selectedGridButtonList.get(check).equals(j.toString() + "," + k.toString())){
selectedGridButtonList.remove(check);
System.out.println("Element is Removed");
selected = false;

}
}
}
else if(selectedGridButtonList.isEmpty()){
selectedGridButtonList.add(j.toString() + "," + k.toString());
System.out.println(selectedGridButtonList.getLast());
System.out.println("First Element is Added");
selected = false;
}
if(selected){
selectedGridButtonlList.add(j.toString() + "," + k.teString());
System.out.println(selectedGridButtonList.getlLast());
System.out.println("Element is added");
}



Originally, | was under the notion that | could use the action listener and simply save the
value of the variables ‘row’ and ‘col’, dictating which button had been pressed. However, |
came to the realization that since the original nested loops had already been completed, the
value of ‘row’ and ‘col’ would have already been 15.

So, after trial and error, | found that | could loop through all the jtogglebuttons again, each

time an action was performed, and compare it to e.getSource() — gets the object

component of which the event occurred. Then, if the respective button and source

matched, its ‘coordinate’ was saved in a Linked List in the format — row + “,” + col such as
“14,7” OR“1,2” OR “9,13”

Complications with this step arised too, since if the user had already pressed the button,
toggling it ‘on’, then pressing the button again would toggle it ‘off on the GUI, yet unwillingly
add another instance of the same button to the Linked List.

Inputting Information Class Calendar  Email Extraction Dance Formatior

Add New Formations by Selecting Grid Boxes

Create a New Dance Formation Click Here to Save Dance Formation

So, a ‘checker’ was added checking the existing clicked buttons in ‘selectedGridButtonList’
to make sure that there was no overlap. If there was, that element would be removed since
the user had unselected it from the formation.



When the ‘Click Here to Save Dance Formation’ button is clicked:

formations.add(new LinkedList<String>(selectedGridButtonList));
selectedGridButtonList.clear();
while(GridPanel.getComponentCount()!=0)
GridPanel. remove (@) ;
addButtons(GridPanel);
JOptionPane.showMessageDialog(this, "You have sucessfully created and saved a new dance formation!", "Success Message", HEIGHT);

e The reason a LinkedList of Strings was utilized, rather than creating another array of
toggle buttons, was for the ease of saving files later.
o Since the FileWriter class utilized can only write characters from a String, it
would easily be able to save the coordinates of each and every button in
each respective formation, ready to be opened and interpreted by a
BufferedReader.

Choosing an Existing Dance Formation:

The spinner will always be set to the default value 0; showing all formations

Pseudo-code for Displaying Existing Formations:

Previous button visibility set false
If formations (ArrayList of LinkedLists) is empty
Go back to ‘creating’ a dance formation
Communicate error with user via JOptionPane
Else (not empty...)
addGrids(0) method (Pseudo-code found below)
next Button visibility is false;

Pseudo-code for addGrids() method: — takes in index of formation which is wanted to be
displayed

Remove all components from panel
Loop through the rows in GridPanel AND ‘jbuttongrid’ 2D array of JButtons
Loop through the columns in GridPanel AND fjbuttongrid’ 2D array of JButtons
Note that JButtons is used rather than JToggleButtons since this is simply for
displaying and there should be no user interaction with the buttons
Make new instance of JButton in the 2D array
Set preferred, min, max size to dimension 40,40
Assume visibility is false
Loop through all coordinates in String format of index of formation
(CHECKER METHOD FOR WHETHER ROW/COL CAN BE FOUND)
SEE FIGURE 7 FOR CLEAR DIAGRAM EXPLANATION
Set visibility true of conditions are true
Add the instance of the button in 2D array to GridPanel




Figure 7

it coordinate Sting length ==
Ls \tis in the format, £g; ["B,LQ“ mp I, '_i‘]
Ly so0 T P—)% = Integer value of SMbS‘Mf\g (0,2

—~ oL = Integer  valwe of  subshin 1.5

Ly i+ CAN be in +w format : " u " n
l 2 “ _q/ /fND 13)3
Y where char At (2) ::e)j / \[ - ’J
J

ROW = Tnteger ualw, of sabshing (o B
Lso €4 & J ‘ﬁ<—j~l
CcoL = Integer value of char A+ (3)

Ok

Lt (AN be in +he foymat ef; [f/3/|ﬂru AND ug,) 12"
O where  chay A+ (i) -

)
Lo H{_Q_&M = In+eﬂer valug of  charat (o)

u COL = Toteger valug of Smbswgﬂj(i)ﬂ
LASTLY

it coordinate Sting fength == 3

\‘9"+ 1S in the -FDFM(H’I QJ) [/r i“ WD ”gij

3

Row - - Integer valwe of charA+ (o
bso TF J Q

(oL = Lot eger valwg, 6T okarﬁJfQ

| was dumbfounded when after implementing all this, | was still having issues with buttons
being shown where they shouldn't have been. To find the root cause of the problem, |
implemented...
1. Aprint line every time a button was set visible
2. A counter which would allow only a limited number of buttons to be set visible,
depending on the size of the formation (# of selected buttons)
3. Removing adding any buttons at all, to see that after all the components had initially
been removed, if any buttons remained. | found none remained.



None of these ended up fixing the issue.

After lots of time attempting to fix this issue, | found that when | was on the program, then
clicked to another application such as Chrome or Netbeans (instead of the Jar), and came
back, the problem VANISHED. | then figured out that if | switched tabs from the “Dance
Formation” to any other tab and then back, it solved the problem as well.

So the last two lines of code implemented which made the algorithm work can be seen
below:

Input.setSelectedIndex(0)
Input.setSelectedIndex(3)

Despite the REASON for the issue not being apparent | came up with 1 of 2 conclusions:
1. Netbeans was having a glitch, solved simply by a “turn off, turn on” type of method
2. The IDE was attempting to save memory, because | found that the buttons that were

n how and did remain, were only BELOW all th ns that wer
supposed to be there, on the GridLayout.
a. Therefore, the assumption is that the program didn't do a full “garbage
collection” of the buttons after all the elements in the Linked List that were
supposed to be there were added.

Lastly, the spinner in the bottom right hand corner of the GUI can be changed to show only
formations with a certain number of selected grids/students.

The difference in the algorithm can be seen below:
private ArrayList<Integer> found = new ArrayList<Integer>();

found.clear();
for(int i = @; i < formations.size(); i++){
if(formations.get(i).size() == (Integer) NumberOfStudentsSpinner.getValue()){
System.out.println("Found formation at:" + 1i);
found.add(1i);

e Then instead of the method addGrids() taking the parameter ‘j’ (simply a counter,
starting at 0), the addGrids() method takes ‘found.get(j)’, storing the indexes in
formations ArrayList where the .size() == value of the spinner.

So, the next/prev button works by simply adding / subtracting 1 from the counter ‘j’
Word Count: 385

Code for Saving/Opening Files (see example below):



public void fwSongs(){
try {

Filewriter fw = new FileWriter("Songs.txt");

for(int 1 = @; i < songs.size(); i++){
fw.write(songs.get(1i).getSongName());
fw.write(":");
fw.write(songs.get(i).getMovieName());
fw.write(":");
fw.write(String.valueOf(songs.get(i).getSongBPM()));
fw.write(":");
fw.write(songs.get(i).getDateOfPerformance());
fw.write(":");
for(int j = @; j < songs.get(i).getCompletedStudents().size(); j++){

fw.write("[" +songs.get(i).getCompletedStudents().get(j).getName());
fw.write(":");

} The Song template class has an attribute, of an ArrayList<Student>.

} So an “extra” tokenizer is added —> " [ ", to seperate each Student instance

fw.close();

} catch (I0Exception ex) {
ex.printStackTrace();

Integer must be
converted to String

}
}

Reading the File “Song.ixt” is quite complicated because of the intricate relationship between

String nextName = "";
int count = 0;
public void frSongs() throws IOException{
try {
BufferedReader br = new BufferedReader(new FileReader("Songs.txt"));
String fileReadIn = br.readLine();
if(fileReadIn == null){

System.out.println(“No songs to read just yet...");
telse{
StringTokenizer st = new StringTokenizer(fileReadIn, “:");

while(st.hasMoreTokens()){
String name;
if(!nextName.equals("") && count > @){ Since Sfring unsureToken (below) may be

name = nextName; the next SongName, this check is needed
nextName = "";

Yelse{
name = st.nextToken();

nextToken() used to

) count++; get String after ™"

String movieName = st.nextToken();

int BPM = Integer.parseInt(st.nextToken());

String date = st.nextToken();

ArrayList<Student> privateStudents = new ArraylList<Student>();
boolean moreStudents = true;

while(moreStudents && st.hasMoreTokens()){ If true, there are more
String unsureToken = st.nextToken(); completedStudents to add to
if(unsureToken.charAt(@) = '['){ privateStudents ArrayList

for{int k = @; k < students.size(); k++){
if(unsureToken.substring(1).equals(students.get(k).getName())){
privateStudents.add({students.get(k));
}
¥
relse{ no more completedStudents for this instance of the object Song...
moreStudents = false;
nextName = unsureToken; Since the method nextToken() was called, the
} nextName needs to be set to that token which is
} confirmed not a completedStudent

songs .add(new Song(name, movieName, BPM, date, privateStudents));
}
refreshSongTable();
String [] songsArray = new String[songs.size()+1];
songsArray[@] = “Choose Song™;
for(int i = 1; i < songsArray.length; i++){
songsArray[i] = songs.get(i-1).getSongName();
}
ClassSongCB.setModel(new javax.swing.DefaultComboBoxModel({songsArray));
SongsForStudentsCB.setModel(new javax.swing.DefaultComboBoxModel(songsArray));
}
} catch (FileNotFoundException ex) {
ex.printStackTrace();

The methods that are
regularly executed
when a new Song is
added by the user

&

b



User Interface/GUI Work

Key features of Java Swing components:
- TextFields
- TextAreas
- Buttons, Toggle Buttons
- Combo Box
- Check Box
- Menu ltems
- Labels
- Spinner
- Tabbed Pane
- Popup Menu
- Progress Bar
- Date Chooser (fromJCalendar library)
- Table, List
- Scroll Pane
Key Layouts Utilized:
- Absolute Layout
- Provides needed limited flexibility for elements not to shift around
- Grid Layout
- Used for dance formations
Other:
- Custom refresh button (refreshing inputting information and JTables)
- Remove button to remove element from Student/Song JTable

[ JOX J
File Help Edit

Ulabsdgeplnielggetely  Class Calendar  Email Extraction  Dance Formations

o Refresh Button Label
Input New Student Information Input Song Information
Insert Student Name Insert Time Zone (GMT) Insert Song Name

Insert Additional Notes

Insert Student Email Insert Movie Name (year)

Insert Student Location TextArea Insert Song BPM
TextFields
Insert Phone Number Date Chooser
OK | Button OK
ST List of Songs | Tabbed Pane
Combo Box N

O Sort By... s Add Songs... H Search in List...
Name Email Location Phone Number Time Zone (GMT) Notes
Ella ‘ella—mariana@g... Luxembourg ‘ 1212343456‘GMT7 ‘Used to live in B...

6691232312/gmtl

Table

Remove

Confirm Check Box



[ JoX J
File Help Edit

Inputting Information

Choose Date and Input Survey Link

Apr 21 B

Class Calendar puagElNS g aile)] Dance Formations

Choose Exsisting Student Email(s) to Add to List

https://www.surveymonkey.com/analyz

Name Email Time Zone
Ella ella-mariana@gma....GMT?7
Petra petra@yahoo.mail [gmtl

Survey Monkey Login Information

Insert Survey Monkey Email

Insert Survey Monkey Password

Extract Emails from Sign-Up Sheet

<——Progress Bar

The emails will be added below:
Email 1
Email 2
Email 3
Email 4
Email 5
Email 6
Email 7

List

Copy Emails to Clipboard

00 @
File Help Edit Menu Bar

Add Highlighted Emails to the List

Inputting Information

Class Calendar

Grid Layout Add New Formations by Selecting Grid Boxes

Create an Existing Dance Formation

Click Here to Save Dance Formation



Software Tools Used

This program is appropriately created on the popular Integrated Development Environment
(IDE) Netbeans, which contains a plethora of convenient features and GUI tools, boosting
my efficiency and productivity. Moreover, it requires a suitable level of Java understanding
for a high schooler, and packs a compiler, spell checker and debugger all into one.

ece MyFirstGUIProject - Apache NetBeans IDE 11.1
PGS B <defautt conf... [ Q- Y B D - [ @ 97/ 73ai0ME | N &) Q- Search (8+1) )
rojects  [Sevees [rean] S 2ad 05 vancotiva |21 sanaava. | stadentjave x | BellymoodCiass ava, |1 Emaliautomationgava [0 Outpt= rur - Inmlale] Feieve = =
> & 16939CSA = = st v | I )
> 85 FlightTracker urce sign istory RE O EHEE2"h b g 1 .
> & MockiA File Help Edit
v & MyFirstGUProject . 5

v B Sour [TCEIGEGI M Class Calendar Email Extraction  Dance Formations

v B«

g

[l

Input New Student Information Input Song Information

3

el

EEDDEE

H
Songjava
SortingAndSearching java
& student java
» [ Test Packages
| B Dependences 3 Progress Bar
» g Test Dependencies - 9
» g Java Dependencies
» g Project Files
» % MyFirstGUIProject 2 oK

0K

(KT List of Songs

Q  SortBy. Add Songs... Search in List...

Name Email Location Phone Number Time Zone (GMT)  Notes

[&7] Menu tem  Checkgox

& Menu tem / RadioButcon

panun Me:
&) 340:28/1:6

Total Word Count: 1,093



