
Introduction:

The product is a NetBeans IDE program that utilizes Object Oriented
Programming. A program that is meant to keep track of bought shoes, and
its profit after reselling. It accepts information from the user based on what
they input about the product. It can search and sort through the data that is
either in the users inventory, or their previous transactions. It also includes
the option for potential versatility, that can be further diversified if
required by the user.

Summary of Programming Techniques:

- Switch case
- Parameter passing
- For loop
- Nested loops
- Method returning a value
- User defined objects made from an OOP "template" class
- Encapsulation of private methods that work on public attribute of a

"template" class
- Making a List of objects
- Simple and compound selection (if/else)
- Sorting (bubble sort etc.), and in particular sorting an array of

objects based on one key attribute
- Searching (linear search, binary search…)
- Saving to a file
- Opening a file to a table
- Error handling (for example catching a divide by 0 error, or a null

pointer while using an array of object…)
- Option pane generation for communicating with the user
- GUI tabs
- Use of a flag value (such as -999, or "not set yet")
- Overloaded constructors, which work differently depending on the

parameters sent

- Inheritance between a super class and a sub class (Shoe with
different genders and Sorting/Searching)

- Polymorphism (Shoe to MensShoe, WomensShoe, ChildrensShoe)
- Linked List
- Not used:

- Due to the fact that I believed recursion would not have been
as necessary or efficient

- Array or ArrayList was not utilized, due to the fact that the
data being worked with is dynamically and changes size, so to
be less memory and efficiency consuming lists were used

Structure of Program

Relationships

● Is a (Inheritance)
● Has (Aggregation)
● Uses a (Dependency)
● MainGUI1 has a shoe
● FileManager has shoes
● ChildrensShoe is a Shoe
● WomensShoe is a Shoe
● MensShoe is a Shoe
● MainGUI1 uses SearchinNSortn
● MainGUI1 uses FileManager

Inheritance

I used inheritance to further differentiate a shoe into the specifics that the shoe of each
gender has. I did not necessarily have to utilize it as much since my client did not

desire much specification between the shoes he conducts his business with. Although,
I had these attributes created for future potential.

22 super(name, size, buyingPrice, sellingPrice, shoeDateBoughtDay,
shoeDateBoughtMonth, shoeDateBoughtYear, datebought, shoeDateSoldDay,

Polymorphism

Polymorphism was utilized due to the fact that the method for shoes was further
diversified into the shoes for each individual gender.

20 public MensShoe(String name, double size, double buyingPrice, double
sellingPrice, int shoeDateBoughtDay, int shoeDateBoughtMonth, int
shoeDateBoughtYear, String datebought, int shoeDateSoldDay,

21 int shoeDateSoldMonth, int shoeDateSoldYear, String collaboration, String
brand, double profitability, String gender, double mensSize){

22 super(name, size, buyingPrice, sellingPrice, shoeDateBoughtDay,
shoeDateBoughtMonth, shoeDateBoughtYear, datebought, shoeDateSoldDay,

23 shoeDateSoldMonth, shoeDateSoldYear, collaboration, brand, profitability,
gender);

24 this.mensSize = mensSize;

25 }

Encapsulation

There were a plethora of variables/methods that were encapsulated within the classes
that were specific to that class, which allowed for not only the ability to share
methods and variables through public classes, but the private variables significantly
reduced the error handling while going through the code.

91 private File getFile(String targetDirectory, int index) throws Exception {

92 Scanner scanner;

93 if(targetDirectory.equals("inventory")) {

94 if(index > directories[0].listFiles().length-1) {

95 throw new Exception(index+" is too big!");

96 } else {

97 return directories[0].listFiles()[index+1];

98 }

99

100 } else if(targetDirectory.equals("transaction")) {

101 if(index > directories[1].listFiles().length-1) {

102 throw new Exception(index+" is too big!");

103 } else {

104 return directories[1].listFiles()[index+1];

105 }

106 }

107 return null;

108 }

Aggregation

The MainGUI1 and FileManager have a shoe because that is what they are either
working with for the tables or for saving to the computer.

Dependency

The MainGUI1 uses the SearchinNSortn class to search and sort through the data in
the tables. This class uses the FileManager in order to save to the computer and keep
the data on the device rather than just on the application.

Classes/Objects/Data Abstraction

The use of objects and classes, provide a level of abstraction that aids in reducing the
difficulty to debug, and reuse of code, which aids in code efficiency and modularity.

Data Structures Used

I primarily utilized LinkedList mainly due to the fact that the data that this program is
working with requires for data to be added, and deleted, from either in the middle of the list
or the end. Since there is no minimum or maximum of the number of shoes that would be
stored, the list of data would have to be dynamic, since the amount of data points required to
be stored would increase or decrease accordingly to the users preference. Additionally, since
the speed of the sorting and searching is not as pivotal to the user, since this program is
mainly focused on keeping track of shoes, a LinkedList would not be at much of a
disadvantage in comparison to the use of an ArrayList.

37 private FileManager fileManager = new FileManager();//Reads and writes data to either
save or retreat from the hard drive

38 LinkedList <Shoes> shoesStored;//A dynamic list of all the shoes that have been bought
but not sold (inventory)

39 LinkedList <Shoes> shoesSold; //A dynamic list of all the shoes that have been sold
(transactions)

40 LinkedList <Shoes> shoesTemp = new LinkedList<Shoes>();//Used when displaying
search results and in the process of moving shoes

41

42

43 SearchinNSortn ss = new SearchinNSortn();

Main Unique Algorithms

Refresh the Inventory Table

model1 = new Table Model get INVENTORY TABLE model

clear INVENTORY TABLE

new SHOES STORED Linked List

loop i from 0 to number of rows in the INVENTORY TABLE

tempShoe = get shoe of index i from INVENTORY TABLE

Add a row to INVENTORY TABLE with new objects of the shoe name, brand, size,

collaboration, gender, the day bought

Store the shoe of index i in the INVENTORY TABLE

end loop

Refresh the Transaction Table

model2 = new Table Model get TRANSACTION TABLE model

clear TRANSACTION TABLE

new SHOES SOLD Linked List

loop i from 0 to number of rows in the TRANSACTION TABLE

tempShoe = get shoe of index i from TRANSACTION TABLE

SOLD DATE = SOLD DAY and SOLD MONTH and SOLD YEAR

add a row to TRANSACTION TABLE with new objects of the shoe name, brand,

size, collaboration, gender, the day bought

Store the shoe of index i in the TRANSACTION TABLE

end loop

Adding a shoe

if fields are not blank or bought day > 0 or bought day < 32 or bought month > 0 or

bought day < 13

d = convert SHOE SIZE to double from inputted spinner value

NEWSHOE = new shoe get name, size, price, day date bought, month date bought,

year date bought, gender, brand, collaboration

try

Make File Manager Add NEWSHOE to INVENTORY TABLE

catch exception

set bought shoe name text field to blank

set bought shoe brand text field to blank

set bought shoe collaboration text field to blank

set bought shoe day date text field to DD

set bought shoe month date text field to MM

set bought shoe year date text field to YYYY

set bought shoe name text field to original combo box index

set bought shoe name text field to original value

set bought shoe name text field to original value

try

Refresh Tables

catch exception

ignore exception

else

Show Error Message

end if

Adding to Inventory table

if converted to int bought day > 0 and converted to int bought day < 32 and converted to int
bought month > 0 and converted to int bought day < 13

Day = SOLD DAY text converted to int

Month = SOLD MONTH text converted to int

Year = SOLD YEAR text converted to int

SOLD DATE = Day + / + Month + / + Year

INDEX = selected row from INVENTORY TABLE

Selling Price = convert FINAL SELLING PRICE converted to String to int

try

temp = get shoe of index i from INVENTORY TABLE

for temp shoe set sold day as Day

for temp shoe set sold month as Month

for temp shoe set sold year as Year

for temp shoe set profitability as Selling price - get the BUYING PRICE

make FILE MANAGER move the shoe at the SELECTED ROW from INVENTORY

TABLE to TRANSACTIONS TABLE

Refresh the tables

catch exception

ignore the error

clear row moved to TRANSACTION TABLE from INVENTORY TABLE

else

Show Error Message

end if

Set SOLD DAY text field blank

Set SOLD MONTH text field blank

Set SOLD YEAR text field blank

Set SOLD PRICE spinner value to original

This database is able to save and remove the specific shoes (data) from the device
memory in real time, hence providing efficient saving and removing, that is at utmost
accuracy with current processes.

Using sequential search, instead of binary search, reduces the need to sort the data,
which may not function due to potential errors with sorting with so many data points.

User Interface/GUI Work

The simplistic design allows for the user to simply click on a button to go to the specific
panel.

The labels instruct the user what to put, and includes a confirmation button. The spinner
value, and its increments, and the gender combo box limit input errors.

The table is able to allocate the data of each shoe accordingly. The sorting and searching
allow for a variety of searching and sorting through the data, but are limited to the options
given to them, to reduce the error possibility. Having a similar method to input the data about
the selected shoe from the table being sold as the buying process reduces the conflict of
understanding.

Having similar methods of sorting and searching processes to the inventory table allows for
the ease for the user experience.

Software Tools Used

Utilizing Java NetBeans IDE allows for the ease in combining GUI elements to programming
abilities. This has allowed to provide a level of abstraction that creates a sense of ease in
programming the necessary actions following each user interaction with the GUI. Using
NetBeans also allows for the programming to take advantage of Object Oriented
Programming, which allows for not only ease in coding, but also code efficiency and
modularity.

Word Count: 801

