Criterion C - Development

Introduction

For this Java program, I have utilized Netbeans, which I was most familiar with and Graphical User Interface (GUI)

for the application could be easily created using Swing tools. This application is a recipe organizer, which keeps

track of all the client’s recipes and additional information that helps the user in a convenient manner while cooking.

Summary List of All Techniques

For loops

ArrayList

Arrays (of Objects/Strings)
A method returning a value
Encapsulation

If statement

Searching

Sorting

Error handling

Use of a flag value

Java GUI Techniques: Textfield.setText(), ComboBox.getSelectedItem(), etc.
Get and Set method

Use of ||, &&, *, !, .equals() on conditionals

Structure of the Program

Figure 1:

EB MainGUIForRecipes.java

As shown in Figure 1, the main class is a GUI class that works as a root of the program. It interacts with the user and

allows the user to input the data, retrieve data and organize according to the user’s preference.

Figure 2:

@ RecipeOrganizer.java E Recipe.java || SortAndSearchRecipes.java

According to Figure 2, a Recipe object template class was made to store recipe data in an organized way. The

remaining class is created for searching and sorting the recipes. There are in total 2 methods to sort recipes

according to the recipe name or the data added and there are 2 methods of searching the recipes using the keywords

a recipe or recorded date. Using these classes and Object-Oriented programming, encapsulation, contractors and

abstractions usage, it allowed the programmer to have efficient handle error handling problems and coding.

Data Structure Used

1) ArrayList
ArraylList<RecipeClass> recipes = new ArrayList<RecipeClass>();

ArrayLists were used to store elements of objects and strings. In specific, the Arraylist of recipes object contains
multiple attributes, which is the basic information of the recipes, such as ingredients, instructions, and time required

to cook the food.

User Interface / GUI Works

In general, for users to interact with the program, I have used server GUI components:

- JTextfiellds: Textbox for users to enter String type of data
- JComboBox: To select information on the list

- JButtons: Select/Check the box to input data

- JLabels: To guide users on how to use GUI component

- JTable: To organize the data used

- JRadioButton: Select/Check the box to input data

- JTabbedPane: Separate tabs depending on the function.

Software Tools Used

NetBeans was the main software tool used to develop and code this program. As stated above, it is a software that |

was familiar with and contains numerous GUI interfaces that could be simply used for the program.

eace Chun - |A - NetBeans IDE 8.2

<default conf... [‘ﬁ‘ @ P~ - @- Qv Search (32 +1) o

@ MainGUIForRecipes.java &

Proje... 3 3
v & chun-i | source | History | IS G EEsarhb & ¢ &| v swing Containers
¥ [Source Packages i i
v B reclheoraantzer Main Table PEEEILEEEEg Add Recipes [Panet
%@ as Find by: Recipe Name Search it
& RecipeOrganizer.ja L split Pane
PsortAndSearchRecip Name Category Ingredient Instructions Date Added Time o scroli Pane
» [Test Packages
» [@ Libraries L= Tool Bar
> [@ Test Libraries 5 Deskiop Pane
» & Full OOP GUI Database Decen
» & Full 0OP GUI DB 2 - Countrie: [internal Frame
» & Insta Java Rev - JSR Edits - Cf [N isyered pane

¥ Swing Controls
el Label

[OH] Button

7 - bs [JTabbedP: - |
tabs (JTabbedPane] - Navig... £ |] tabs (JTabbedPane] <]
[["Properties | | ginding |

] Form MainGUIForRecipes
Events Code

» K Other Components

¥ [=] UFrame] -
v Properties
» 5 menuBar [MenuBar] background [[238,23 .|
A i ff1abs [ITabbedPane] = :
v [listRecipe DPanel] :mrder d ru[Enrd]erl_.. {
oregroun 0,0,0

v 4 tableScroll [Scrol
=] recipelistTab

155 sortByAlphabetBt
(G5 sortByNewestBt [

selectedindex 0]
tabLayoutPoli(WRAP... & | |
tabPlacement TOP & ||

=i jlabelll [Label] tool TipText |
(05] refreshListBt [JBu v Other Proj i

r perties
= jlabel12 [JLabel] NIClassID Tabhedp...| |

(9] deleteBtl [JButto

v [_] searchRecipe [IPane
[nameTf ITextFie

a5 jlabel7 [Label] a o L

v [iscrollPane1 [15ci

tabs [JTabbedPane] ?

Output - Chun_-_IA (run-single)

13:10

Chun - |A - NetBeans IDE 8.2

: ﬁ ﬁ % i % @ <defau!tconl._.a tﬁ‘ :@ |> - ' @‘ (| Q- Search (%+1) o

L rjava | [MainGUIForRecipes.java @ | | RecipeClass java ©* | s
v & chun- 1A History & LR AL]
¥ [Source Packages 1
= : -
Eé; 2 * To change this license header, choose License Headers in Project Properties. =
@BR ipaClased = 3 # To change this template file, choose Tools | Templates =l
B R"‘f"‘ﬂ“s"_a"‘_ 4 * and open the template in the editor.
ecipeQrganizer.jal 5 */
S fs":"‘ﬁ““hkm’ 6 package recipeOrganizer;
[Test Packages 7
> [& Libraries 8 B import javax.swing.JOptionPane;
» @ Test Libraries 9 - import javax.swing.table.DefaultTableModel;
» & Full OOP GUI Database Decen| 10
» & Full OOP GUI DB 2 - Countries) 11 S
> & Insta Java Rev - JSR Edits - CHf 12 *
13 * @authof 18812
14 */
15
16 public class MainGUIForRecipes extends javax.swing.JFrame {
17
18 private RecipeClass [] recipes; »
MalnGUlFurRe:!pesta\dig...O- 18 int counter = 0;
Members B <. ¢ [@@ 20
21 SortAndSearchRecipes sortClass = new SortAndSearchRecipes(); =
L P MainGUIForRecipes :: JFra 2
< MainGUIForRecipes() 23 //private ArrayList<Recipe> recipes = new ArraylList<Recipex>();
@) deleteBtl ActionPerform | 24
&) exitMenultemActionPerfi 25 public MainGUIForRecipes() {
&) initComponents() 26 initComponents();
) instructionsTf2Actionper | 27 myInit(); o
() main(String[] args) 25 ¥ -
mylnit) gz
TfActionPerft i
g ::f':sh() s 31 o private void myInit(){
&) refreshListBtMouseRelez 32 recipes = new RecipeClass[99];
o e —— d‘ 33 for(int i = @; i < recipes.length; i++){
& :::;:Mo:::h:lea:::(': 34 recipes[i] = new RecipeClass();
35
? searchBtMouseReleased 36| L }
B A S W S o
® 0 | @ & B[sea Output - Chun_—_IA (run-single) £ g
13:10 [INS |

Word Count: 406

