Criterion C - Development

Introduction

The product is a Java program coded on Netbeans that allows Mr.Callahan to do the following:

Import csv file of the spreadsheet he uses currently to keep track of tutors and tutees
Manually input new tutors and tutees to the database

Manually edit the data of existing tutors and tutees

Provide a list of tutors available for a new unpaired tutee based on subject area

Pair tutors and tutees

The product was designed to allow Mr.Callahan to pair new tutees with tutors more efficiently by
narrowing down tutor options for tutees based on subject and availability.

In the development process, the final product was simplified from the final prototype after realizing
unfulfilled needs or encountering difficulties in code.

Word Count: 121

List of Techniques

Sequential Search

User created ToString methods

Overloaded constructors

User defined objects Tutees, Tutors, TimeTables

Array of Objects

for/while/nested loops, if/else statements

Error Handling

Parsing int/double/string/files

File Parsing using Scanner and String Tokenizer (scanner.nextLine(), st.countTokens(),
st.nextTokens())

GUI Elements: JTable, JTextPane, JComboBox, JRadioButton, JCheckbox
Decomposition by declaring and calling methods

Overriding global variables

Use of flag values

Encapsulation

Inheritance

Word Count: 0 (bulleted list)

Structure of the Program

In this program, there are a total of 7 classes. The MainlAGUI class is the class which is run when the
user uses the program. The Tutor and Tutee class are classes used when creating instances of new Tutors
and Tutees in the program. The Student class is the parent class of the tutor and tutee. The timeTable
class is where instances of timeTables were created. Aggregation was applied as the Tutor and Tutee class
both “had an” an array of timeTables as an attribute. Finally, the ReadTutorAndTutee class was used for
reading csv files and the SortAndSearchStudents class was created for any sort and search methods used
in the program. Overall the relationship between the classes in the program can be explained using the
diagram below.

‘has a'

— Studentjava — 7 . & TimeTablejmva
L
“ima® [Yo tisal
III '.l'
[L
@] Tutor java 1] Tutee.java
L
4
n, !
\ /
"usesa" J usesa
i
\ /
[MainlAGULjava
. H""
‘uses a” o T MUses at
. ‘H""'
e .,
&) ReadTutorAnd Tutee.java 2 SortAndSearchStudents. java

There were several reasons why an Object Oriented Program was developed for this program. Firstly,
having several classes divided in the way above allowed there to be better modelling of real world
relationships. Secondly, the application of inheritance by having a superclass of Students and subclasses
of Tutor and Tutee reduced redundancy, consequently allowing faster development, increased reliability,
and efficient testing. Thirdly, the use of encapsulation allowed data to be manipulated with security and
stability and lastly, by decomposing the program into separate classes, it allowed each part of the program
to be created and tested separately before putting them altogether, making the production process
efficient.

Word Count: 233
Data Structures Used: Arrays

For this program, arrays of objects (Tutees, Tutors, timeTableArray) and arrays of strings (subjects,
tutorTypes) were predominantly used instead of arrayLists for several reasons. First of all, being a
program with a limited set of tutors and tutees, both which has numbered around 30 at our school, it was
judged that there would be no need to change the length of the arrayList of tutees and tutors and as a
result, tutor and tutee arrays of length 50 were created instead of an arrayList of variable Length.

Secondly, because the program required direct access to the attributes of tutors and tutees searched, it was
judged that arrays would allow better direct access as there were limitations in direct access with
arrayLists.

public class MainIAGUI extends javax.swing.JFrame {

private Student[] students = new Student[100];

private Tutor[] tutors = new Tutor[50];

private Tutee[] tutees = new Tutee[50];

private int tutorCounter = 0;

private int tuteeCounter = 8;

private TimeTable[] timeTableArray = new TimeTablel[4];
private Tutee searchedTutee;

private Tutor searchedTutor;

private String[] subjects = new String[17];
private String[] tutorType = new String[5];

Word Count: 125
Key Algorithms

This program can be largely divided into three parts, manual data manipulation (manually
changing/adding data), file import and tutor tutee pairing. In this section, the algorithms behind the three
different parts of the program will be explained.

1. Manual Database Manipulation

To successfully operate the ‘Manual Input Tab’ and ‘Change Data Tab’, 6 main blocks of code were
repeatedly used in combination with one another: (1) retrieving data input from the tab, (2) retrieving data
from the arrays to the tab, (3) creating an instance of tutor/tutee, (4) setting values of an instance of
tutor/tutee, (5) refreshing the tab, (6) searching for tutor/tutee.

The ‘Manual Input Tab’ used block 1, 3, 5 respectively and the ‘Change Data Tab’ used block 6, 2, 3, 5,
respectively. The overlaps in code allowed the blocks of code to be often tested independently resulting in
smoother testing.

To highlight a nuanced method used in the manual data manipulation part of the program, the
‘ShowTutor(/Tutee/Student)Subjects’ method uses a series of if/else statements in a for loop so that the
subject data imported from the spreadsheet, which is not in the order of the buttons in the change data tab,
can still be loaded to the radio buttons. This change was made after I realized that not putting the if/else
statements in a for loop results in the program to not load subject elements not originally intended to be in
its place.

RE 1 (

public String[] ShowTuteeSubjectData(String[] subjects) {

N ena
< = ENgL

fbr(lnt i =@; i < subjects.length; i++){r

if (subjects[il.equals("English")) {
TuteeEnglishButton.setSelected(true);

}

if (subjects[i].equals("ESL")) {
TuteeESLButton.setSelected(true);

+

if (subjects[il.equals("Math")) {

TuteeMathButton.setSelected(true);
L

2. Import Spreadsheet Tab
As the import tab was added to maximize usability of my program for Mr.Callahan, who had already been
using a csv file to pair tutors and tutees, I needed to respect the file format which Mr.Callahan was using.
The image below shows the file format which Mr.Callahan had been using.

Jin Wang 9 Chinese/Math/Art 20815@students.isb.ac.th MS Dani Hansberry 18033@students.isb.ac.th T Chinese I
Tai Yi Lao 9 Chinese/Science 19002 @students.isb.acth MS X
Nicole Villars 11 Spanish/French/Math 20271@students.isb.acth MS X
Dong Soo Kang 11 Math/Science 19978@students.isb.ac.th MS/PB Uday Badola 19917 @students.isb.acth F Math/SS I
Kankanit Duan Jongrengpian 9 Science 167 16@students.jsb.acth MS T YES
Sirin Nanny Thammakaison 9 Math 16749@students.isb.acth MS Patrick Andrist 19051 @students.isb.acth W Science
Amalie Poret 9 English/Math 19414@studentssbacth MS Yui Tominaga 19929@students.isb.acth T English/SS
Niharika Soni 9 | Math/Sclence 20742@students.isb.ac.th MS X
Szu Hua Paula Wu 8 Math/Science 18046@students.isb.acth MS WiF YES
Saksham Singh Birla 9 Math/Science 20655@students.isb.acth MS MF YES
[Song Vi Rachel Hyun 11 Math/Bia/Chem 20447 @students.isb.acth | HS Jeramy Stuit 1821 Galudents sh.ac.h W Math/General

Ganghee Alex Son 12 | Math 20442@sludentsjsbacth HS Vincenzo Tejawinata 20743@students.isbacth TH Math
Josephine Nahoum 12 | Spanish 20318@students.jsb.acth HS Oishika Mukherjee 20136@students.isb.acth X Spanish
Ranid Raiyan Tanveer 12 | Math/Physics/Chemistry 20507@students.isb.acth HS X
Brian Yoon 12 Math/Physics 19826@students.lsb.ac.th HS/MS/PB F
Ben Homan 11 Math/Science/French 2077 3@students.sbacth HS/MS TT™H YES
Jeslyn Brouwers 11 English/Math/World Studies 14804@students.isbacth MSHS Secha Hong 20233@students.isb.acth T Writing/Reading Science I
Arno Melkonyan 10 | Math/Music 20468@students.|sb.ac.ih PE/MS MTH YES
Tachpan Wendy Poommarapan | 9 Thal/Math/Sclence 20551 @students.ish.ac.th MS/PB WIFPE/TH YES
Rhea Kapoor 11 Physics 20452@students.isb.ac.th | PB WF
Craig Dawe 12 _English/Psych/Math 16886@sludantslsbacth PBE W
Man Geun Chun 12 Math/Physics/Chemistry 18812@students.lsb.acth P8 Jashea Jung 21252@students.isb.acth T Math I
Yeonie Heo 12 | Chem/Math 19772@studentsisb.acth PB F
Penelope Lugo 10 English/Spanish 207 46@students.isb.acth P8 X
Dohwan Kim 12 Bio/English 18250@students.isb.acih PB X
Wendy Poommarapan 9 Thal/Math/Sclence 20551 @students.isb.acth MS After School M
Kankanit Duan Jongrengplan 9 Science 16716@students.isb.ac.th MS After School T
Ben Homan 11 Math/Science/French 20773@students.isb.ac.th MS After School I

Micholas Garrigan 20373@students.isbacth T French

Grace Homan 20fT1@sludents.isbacth X French

Rocco Abate 20172@students isb.acth T Mandarin

Sam Mareno (§) 20668@students.isb.acth MTH Mandarin

The Blue box represents all the tutors, the red box indicates the unpaired tutees and the black boxes
indicate unavailable tutors and tutees which have already been paired. By using the scanner.nextLine(),
each time I looped through the rows in the table, the program encountered either 9, 7, 6, 4 elements, thus I
decided to construct if/else statements for the 4 different cases. Tutors were added when there were 9, 7 or
6 tokens and tutees were added when there were 9 or 4 tokens. Below, only the code for readingTutorFile
class is explained as the readingTuteeFile has the same algorithm with small adjustments.

public static Tutor[] resdisgFuetorfile(Tutor([] twtors, ist twtorCownter) throws FileNotFoundException {

Scanner scanner = new Scanner{new File{“FeerTutoring.csv™))z
String tutorMame = “not set yet™;
int grade = -9;

Strimg subjectsString = ot set yet™p

String tutorID = “not set yet~j Initialization of
String tutorTypeString = "not set yer™; variables
5tring availablebaysString = “rot ™

TineTable(] timeTableArray = {new Tl.-'l.ll'l.zi:l, pew TimeTableil, pew TiseTable(), new TinmeTabled)};

boclean isMS0nCall = false;

boglean isCurrentlydvailable = true;

while (scanmer,hasNextLinel)) {
String line = scanner.nextLine();
StringTokenizer st = mew StringTokenirer|lime, [} Use of scanner to

stringl]l subjects = new StringliTl; split the file by lines

s;tr:..:.,n;::urgn = v $!Im|lll. y Initialization of local
oriint] tutor "1 -r-:t'- bes -
tuterTypelb] = “not s 3 varniables

foriint k =8 l-uul:l:r.u Lf"q'" ee) {
subjectulk] = = ot yet=|

whilaist.countTokenal) == § || st.comntTohensid == & || at.counmtTokens(] == TH{

ifist. countTakensl) == 9){ i i
e gy Tokens in the line are counted and

grade = Integer.parseintist.nextToneni)); ONY lings with token number 9, 6, 7

subjectsString = st.nextToken(); are considered as tutors
tutarlD = st.nextToken().substringl®, 5);
T = §t. T i .
o tantyy © T4-eemkhomead) 9 is the case where the tutor and tutees
st.nextTakend) are paired, hence tutor instance is

avallableDaysString = st.mextToken|);

LsCurrsntlwivailable = falss: created and tutor is marked unavailable

else if(st.countTokensi() == &){

tutorName = st.nextToken(); ,
grade = Integer.parselnt{st.nextToken(])); Ei:- 7 is the case where

subjectsString = st.nextToken(); i
tutorID = st.nextToken().sebstringl®, 5); onl},r a tutor EI.‘XI$JL5 Elrld
tutorTypeString = st.nextToken(); they are available

availableDaysString = st.nextTokenl);
isCurrentlyAvailable = true; because th?}" do not have
a tutee. attributed of tutor
else ifist.countTokensi) == T){ . . .
tutorNane = st.pextTokenl) 15 aﬁslgnﬂd for both iffelse

grade = Integer.parselnt|st.nextToken());
subjectsSering = $t.nextTokeni); blocks almﬂugh the

tutorlD = st.nextToken(|.substringl®, 5); @xistence of the

tutorTypeString = st.nextTokenl); .
pvalilableDaysString = st.nextToken!); isMSonCall token causes

LshSOnCall = true; the difference in token
isCurrentlyAvailable = true;
count

b
else{

) Intermediary

Stringll subjectaTenp = subjectsString.spliz(” "); attributes are used to
Stringl] tutorTypeTemp = tutorTypeString.spliti-/~); convert all varlables

forfint k =8; k< subjectsTemp. Length; kes) to the appropriate

b [kl = sub 1] Ikl; i
subjects subjectsTanp attribute data type of

b

for{int k =8} k< tutorTypeTesp. lengthng kes){ tutars
tuterType[k] = tuterTypeTenp (k] ;

b

tuters [tutorCounter] = new Tuter{tutordane, tutorID, grad

tuterCounters+; i
System. out.printlni tuterType[8]); Instance of tutor is

} created using the
} obtained attributes

return tutars;

3. Pair Tab

When generating pairs for the tutee input, the tutee is searched and all the attributes of the tutee is loaded
to the table. Then, the application loops through subjects of all the tutors and loads available tutors with
the same subject as the tutee and these tutors are then displayed to the results table.

private void PairTuteeMameSearchButtonMouseReleased(]ava.awt.event . MouseEvent evt) {
String searchInput = PairTuteeNaneSearchTextField.getText(); v
SortAndSearchStudents searchTuteellass = new SortAndSearchStudents(); SEﬂIII"Ig Of
searchedTutee = tutees[searchTuteellass.TuteeSequent lalSearch(tutess, searchInput)ly .
System.out.printinlsearchedTutee, getName()) ; wanables:

ShowTuteeSubjectDatalsearchedTutes, getSubjectsi)); USE Gf

TimeTable timeTableArray[]l = searchedTutes.getTimeTable(); searching

System.out.println{"Hi" + searchedTutee.getMame());

PairTuteeSearchResultsTable,setValueAt(searchedTutee,getiamel(), @, @);

PairTuteaSearchResultsTable, setValueht(searchedTutes, getGender(), 8, 1);

PairTuteeSearchResultsTable, setValueAt(searchedTutee,getGrade(), 8, 2);

PairTuteeSearchResultsTable,setValueAt(searchedTutee, ToStringSubjects{), &, 3); 1 1

F'.1|rT'l.|'I|-r§|-.1r|:hﬂ.|-“\.ul!'\.TﬂI:nl:-,I.el'l.l'a'l.ue.ﬂ.tfhrdrrhﬂl'.lIH#.TQSIr[aniﬂTablg{J. B, 4); Dlsplaylng {?f

PairTuteeSearchResultsTable. setValueAt(searchedTutee.getSpecialNotes(), 8, 5); Tutee Data n

Tuter[] availableTutors = new Tutor[58];

far{int 1 = 8; 4 = availableTutors, length; ++){ table
availableTutors(i] = new Tutor();

}

int a = @

for{int 1L = 8} 1 = tutors.length; Lesh{
for(int § = @; § = tutors[i].getSubjects().lengthy je+){
for{int k = @; Kk = searchedTutee,getSubjects(). length; kes){
if{tutors[i].getSubjects{)[]).equals(searchedTutee.getSubjects()[k]) &&
Itutors [1].getSubjects{h[]).equals{"not set yet") & tutors[i].getIsCurrentlyAvailablel)){
availableTutorsia] = tuters(i];
B}

} Looping through array of tutors and subjects of tutors to find places
, ! where tutee has same subject. * N cubed efficiency issue but because
} the length of the arrays were relatively small it was left as is

for{int row = @; row < avallableTutors. length; rows+){
if{favailableTutors [row] . getNamed) equals{ 'not set yet")

TutarSearchResultsTable.setValueAt {availableTutors [row].getName(]), row, 8);
TutorSearchResultsTable. setValueat {availableTutors [row].getGender(), row, 1);
TutorSearchResultsTable, setvValueat (availableTutors [rowl .getGradel), row, 2);
TutorSearchResultsTable.setValueAt{availableTutors [row] . ToStringSubjectsi), row, 3);
TutarSearchResultsTable.setValueat {availableTutors [row].ToStringTineTable(), row, 4);
TutarSearchResultsTable, setValueat (availableTutors [rowl . getSpecialNotes(), row, 5);

! Refreshing the table

tutors [@].ToStringSubjects();

Word Count: 464

Considerations for User Interface

Overall, GUI was used to make the program easy to use for the client. For each textfield, text was either
embedded in to make it clear what had to be input and each swing controls were labelled with
terminology which the client was familiar with.

Word Count: 45

Software Tool Used

Tutor Name Search
Currently Available Grade 6
Tutor Type
MS HS PB MS on Call
Subjects
English World Studies General Science
English (ESL) Geography Chemistry
Math Psychology Coding
Chinese Business Physics
French History Biology
Spanish Economics
Available Times (ex: Tue, 15.00 - 16.00)
Day Start Time End Time Day Start Time End Time
Day Start Time End Time Day Start Time End Time
Special Notes
Submit

To create the program Netbeans, an IDE for Java was selected due to its code libraries, OOP support and
its powerful GUI builder which supports a Swing Application Framework.

B 1A - Brian - NetBeans IDE 8.2

ene IA - Brian - NetBeans IDE 8.2 5 | <default conf... [G D - Ep- @~ Q- Search (% +1) o
F D @ <ot B P W D B G- Q- Search (3 +1) Sartpage (-][5) ReadTutorAndTutseiava 1] o MamACU a2 Toteiava [l el Paece 0] w
)| StartPage (||<| ReadTutorAndTuteejava = [|3 MainlAGUIjava © [<] Tuteejava " | 5| SortAndSearchsStudents java |) Tutor jave Source | | Design | | History BIE B B &I hi & §m| v SwngContainers
s|[Soiee [oeion | sy | B B-6- QB SFRBL L% @Y o0 & N = [ranel £ Tabbed pane
s 3| @ = 3 x
& 2am TutorAvailableStartTine3. setText("Start Tine"); 2| ¥ Double-click the tab to change its text [split Pane I scroll Pane
3| 2012 TutorAvailableEndTime3. setText("End Time"); ® =
©| 2413 TutorSpecialNotesTextPane. setText(""); T Search [= Tool Bar 55 Desktop Pane
2414 3 =
s =) [Jinternal Frame. [8] Layered Pane
| 2416 1 private void Pail java.awt.event evt) { 8 Currently Available Grade s B v Swing Controls
| 2017 String searchInput = PairTuteeNameSearchTextField.getText(); <
8| 2018 SortAndSearchStudents searchTuteeClass = new SortAndSearchStudents(); & Tutor Type R 3] Button
2| 2010 searchedTutee = tutees[searchTuteeClass.TuteeSequentialSearch(tutees, searchInput)l; =} E—— o Check
i 2420 System.out.println(searchedTutee.getName()); Ms HS B MS on ¢ | 1 Teggle Buon eck Box
2 2 i @~ Radio Button 8= Button Group.
g| 22 ShowTuteeSubjectData(searchedTutee. getSubjects()); z Subjects i
T TimeTable timeTableArray[] = searchedTutee.getTimeTable(); g 5 el ST G [ComboBox [List
(T3] 2424 System.out.printin("Hi" + searchedTutee.getNane()); s S SR CRNcS =
2425, PairTuteeSearchResultsTable.setValueAt(searchedTutee.getName(), 0, 0); 3 English (ESL) ey Chemistry [Text Field [04] Text Area
g 22 PairTuteeSearchResultsTable. setValueAt (searchedTutee.getGender(), 0, 1); = R S
5| 2427 PairTuteeSearchResultsTable.setValueAt(searchedTutee.getGrade(), @, 2); & Math Psychology Coding
3| 2428 PairTuteeSearchResultsTable.setValueAt(searchedTutee.ToStringSubjects(), @, 3); = [Progress Bar (2] Formatted Field
5| 2429 PairTuteeSearchResultsTable.setValueAt(searchedTutee.ToStringTimeTable(), 0, 4); Chinese Business Physics o
2430 PairTuteeSearchResultsTable, setValueAt (searchedTutee. getSpecialNotes(), @, 5); 3 cisrich . sl (=) Password Field [[2] Spinner
2431 Tutor[] availableTutors = new Tutor[50]; it istory, 10109Y; = [T Textpane
2432 for(int i = 0; i < availableTutors.length; i++){ ShanTen Economics .
2433 availableTutors[i] = new Tutor(); || Editor Pane [t] Tree
2434 Available Times (ex: Tue, 15.00 - 16.00) -
2435 [Table
2036 inta=o; Day StartTime End Time Day StartTime End
- Tor(int i = 8; 1 < tutors. length; L++){ [XAswips Menus
Q for(int j = 0; j < tutors[il.getSubjects(). length; j++){ Day | Start Time| End Time Day [StartTime| End B} Em v gar
Output - IA - Brian (run) a0 Special Notes [Menu
W run
| Ms [+ Menu item
Ms
o s 57 Menu item / CheckBox
) oms [57] Menu tem / RadioButton
Ms
ﬂ: Submit 53 Popup Menu
ue | |- separator

Word Count: 29
Criterion C Word Count: 1017

