
Criterion C - Development

Introduction

The product is a Java program coded on Netbeans that allows Mr.Callahan to do the following:

- Import csv file of the spreadsheet he uses currently to keep track of tutors and tutees
- Manually input new tutors and tutees to the database
- Manually edit the data of existing tutors and tutees
- Provide a list of tutors available for a new unpaired tutee based on subject area
- Pair tutors and tutees

The product was designed to allow Mr.Callahan to pair new tutees with tutors more efficiently by
narrowing down tutor options for tutees based on subject and availability.

In the development process, the final product was simplified from the final prototype after realizing
unfulfilled needs or encountering difficulties in code.

Word Count: 121

List of Techniques

- Sequential Search
- User created ToString methods
- Overloaded constructors
- User defined objects Tutees, Tutors, TimeTables
- Array of Objects
- for/while/nested loops, if/else statements
- Error Handling
- Parsing int/double/string/files
- File Parsing using Scanner and String Tokenizer (scanner.nextLine(), st.countTokens(),

st.nextTokens())
- GUI Elements: JTable, JTextPane, JComboBox, JRadioButton, JCheckbox
- Decomposition by declaring and calling methods
- Overriding global variables
- Use of flag values
- Encapsulation
- Inheritance

Word Count: 0 (bulleted list)

Structure of the Program

In this program, there are a total of 7 classes. The MainIAGUI class is the class which is run when the
user uses the program. The Tutor and Tutee class are classes used when creating instances of new Tutors
and Tutees in the program. The Student class is the parent class of the tutor and tutee. The timeTable
class is where instances of timeTables were created. Aggregation was applied as the Tutor and Tutee class
both “had an” an array of timeTables as an attribute. Finally, the ReadTutorAndTutee class was used for
reading csv files and the SortAndSearchStudents class was created for any sort and search methods used
in the program. Overall the relationship between the classes in the program can be explained using the
diagram below.

There were several reasons why an Object Oriented Program was developed for this program. Firstly,
having several classes divided in the way above allowed there to be better modelling of real world
relationships. Secondly, the application of inheritance by having a superclass of Students and subclasses
of Tutor and Tutee reduced redundancy, consequently allowing faster development, increased reliability,
and efficient testing. Thirdly, the use of encapsulation allowed data to be manipulated with security and
stability and lastly, by decomposing the program into separate classes, it allowed each part of the program
to be created and tested separately before putting them altogether, making the production process
efficient.

Word Count: 233

Data Structures Used: Arrays

For this program, arrays of objects (Tutees, Tutors, timeTableArray) and arrays of strings (subjects,
tutorTypes) were predominantly used instead of arrayLists for several reasons. First of all, being a
program with a limited set of tutors and tutees, both which has numbered around 30 at our school, it was
judged that there would be no need to change the length of the arrayList of tutees and tutors and as a
result, tutor and tutee arrays of length 50 were created instead of an arrayList of variable Length.

Secondly, because the program required direct access to the attributes of tutors and tutees searched, it was
judged that arrays would allow better direct access as there were limitations in direct access with
arrayLists.

Word Count: 125

Key Algorithms

This program can be largely divided into three parts, manual data manipulation (manually
changing/adding data), file import and tutor tutee pairing. In this section, the algorithms behind the three
different parts of the program will be explained.

1. Manual Database Manipulation

To successfully operate the ‘Manual Input Tab’ and ‘Change Data Tab’, 6 main blocks of code were
repeatedly used in combination with one another: (1) retrieving data input from the tab, (2) retrieving data
from the arrays to the tab, (3) creating an instance of tutor/tutee, (4) setting values of an instance of
tutor/tutee, (5) refreshing the tab, (6) searching for tutor/tutee.

The ‘Manual Input Tab’ used block 1, 3, 5 respectively and the ‘Change Data Tab’ used block 6, 2, 3, 5,
respectively. The overlaps in code allowed the blocks of code to be often tested independently resulting in
smoother testing.

To highlight a nuanced method used in the manual data manipulation part of the program, the
‘ShowTutor(/Tutee/Student)Subjects’ method uses a series of if/else statements in a for loop so that the
subject data imported from the spreadsheet, which is not in the order of the buttons in the change data tab,
can still be loaded to the radio buttons. This change was made after I realized that not putting the if/else
statements in a for loop results in the program to not load subject elements not originally intended to be in
its place.

2. Import Spreadsheet Tab
As the import tab was added to maximize usability of my program for Mr.Callahan, who had already been
using a csv file to pair tutors and tutees, I needed to respect the file format which Mr.Callahan was using.
The image below shows the file format which Mr.Callahan had been using.

The Blue box represents all the tutors, the red box indicates the unpaired tutees and the black boxes
indicate unavailable tutors and tutees which have already been paired. By using the scanner.nextLine(),
each time I looped through the rows in the table, the program encountered either 9, 7, 6, 4 elements, thus I
decided to construct if/else statements for the 4 different cases. Tutors were added when there were 9, 7 or
6 tokens and tutees were added when there were 9 or 4 tokens. Below, only the code for readingTutorFile
class is explained as the readingTuteeFile has the same algorithm with small adjustments.

3. Pair Tab

When generating pairs for the tutee input, the tutee is searched and all the attributes of the tutee is loaded
to the table. Then, the application loops through subjects of all the tutors and loads available tutors with
the same subject as the tutee and these tutors are then displayed to the results table.

Word Count: 464

Considerations for User Interface

Overall, GUI was used to make the program easy to use for the client. For each textfield, text was either
embedded in to make it clear what had to be input and each swing controls were labelled with
terminology which the client was familiar with.

Word Count: 45

Software Tool Used

To create the program Netbeans, an IDE for Java was selected due to its code libraries, OOP support and
its powerful GUI builder which supports a Swing Application Framework.

Word Count: 29
Criterion C Word Count: 1017

