
Criterion C - Development
Kathapet Nawongs

Overall Word Count: 811 words

Introduction
➔ For my project, Netbean was used to create functional codes that can store and

calculate numerical data, and allow Java Swing tool to create the whole user interface of
my program.

➔ This program will allow flight information to be inputted and calculated for my client’s
presentation.

Word count: 47 words

All Techniques Used...
❏ Parameters passing
❏ Encapsulation

❏ Privatizing variables
❏ For loop
❏ While loop
❏ Arraylist
❏ Nested loop
❏ Saving to a file

❏ FileWriter
❏ Error handling
❏ Simple and compound selection
❏ Selection sort
❏ Linear search

❏ Joptionpane
❏ GUI tabs
❏ GUI popup menus
❏ Use of a flag value (eg. -999 or “not

set yet”)
❏ Overloaded constructor
❏ Parsing a file

❏ StringTokenizer
❏ Inheritance

❏ Abstraction
❏ Inheritance
❏ Super and Subclass

Word count: 56 words

Structure of the program

What
The central class is the GUI class which would allow the user to interact with the program and
input the flights data - just like what GUI stands for “Graphics User Interface”.

There also a need for a Flight class which would allow the flight inputs to be stored as an
ArrayList. Inheritance creates a hierarchy structure where the flight class is the parent class, and
the domestic and international flight class is the child class.

My other two classes are for the function of the GUI. The first is to search and sort my flights
data, and the second is to save and read the flights into a file.

Why
Inheritance is needed to distinguish between the types of flight that my clients need to work
with, which are domestic and international flights. Moreover, the international flight and domestic
flight class can receive attributes from the flight class while having additional, unique attributes
of its own such as having a visa.

Via encapsulation, the attributes of that “template” class can only be changed by the methods
that is created publicly.

By splitting my program into multiple classes, I am able to have a template class using a
constructor. This allows multiple instances of classes to be made, and other classes can
access their methods.

The creation of sub classes also allows abstraction. In order for the debugging and
maintenance to become easier due to the modularity of the program.

Word count: 240 words

Data structures used

What
1. Arraylist

2. Files

Why
Arraylist can vary the amount of elements in the array, depending on how many flights my client
work with. These flights can be iterated efficiently making it useful for sorting and searching the
entire data structure.

Example: Flights with attributes of city code, country destination and etc.

Files can be used to save the data attributes and can be accessed later on when needed. This
is viable due to the use of the class FileWriter and FileReader.

Example: Created a file for the flights called ‘flight.txt’.

Word count: 91 words

Main Unique Algorithms

What
#1 - File writing 1

Pseudocode for SaveFlights (not included in the word count)

fileName = “Flight.txt”

FileWriter takes in fileName

write “” + flights.size

write “:”

loop i from 0 to flights.size

write “” + CityCode in i in flights

write “:”

write “” + CityDestination in i in flights

write “:”

write “” + TotalDistance in i in flights

write “:”

write “” + NumberOfFlights in i in flights

write “:”

write “” + TotalPassengers in i in flights

write “:”

write “” + TotalRevenue in i in flights

1 Refer to SaveAndRead Class

write “:”

write “” + RequireVisa in i in flights

if RequireVisa in i in flights = true then

write “” + CountryDestination in i in flights

write “:”

else if RequireVisa in i in flights = true then

write “No visa required”

write “:”

close

#2 - File reading 2

Pseudocode for ReadFlights (not included in the word count)

new FileReader to read “Flight.txt”

assign FileReader to BufferedReader

read whole ArrayList with String ReadInFile

Initialize StringTokenizer(readInFile, “:”)

numFlights = st.nextToken

Initialize Arraylist flight

Loop i from 0 to flight.size()

Add new InternationalFlight to flight

CityCode = StringTokenizer.nextToken

CityDestination = StringTokenizer.nextToken

NumberOfFlights = StringTokenizer.nextToken

TotalPassengers = StringTokenizer.nextToken

TotalRevenue = StringTokenizer.nextToken

Distance = StringTokenizer.nextToken

CountryDestination = StringTokenizer.nextToken

Assign each attribute to flights

returns flights

#3 - Other algorithm used includes selection sort and sequential search 3

Pseudocode sorting flights by code (not included in word count)

Loop for int i from 0 to size of arraylist flights - 1

minIndex = i

Loop for int j (= i + 1) from 0 to size of arraylist flights

If(flights[i].getCityCode.comparesTo(flights[minIndex].getCityC

ode)<0

2 Refer to SaveAndRead Class
3 Refer to SortAndSearchFlight class

minIndex = j

End if

If minIndex != i

InternationalFlight temp = flights[i]

set i = flights.get(minIndex)

set minIndex = InternationalFlight temp

End if

End loop

Pseudocode searching flights by code (not included in word count)

key = user input

Loop for int i from 0 to size of arraylist flights

If flights[i].getCityCode().equals(key)

then return i

End if

End loop

Then return -1

Why

#1 - File writing

FileWriter is a fundamental constructor used to create FileWriter object given a file name called
“Flight.txt”. The nested “for” loop can accurately write all of the flights that have been added into
the file.

#2 - File reading

FileReader is another fundamental constructor which indicates that the file “Flight.txt” will be
read. Together, the BufferedReader and ReadInFile method can read the whole file in. The
most unique method is the StringTokenizer. It takes in semicolon as a parameter hence it can
distinguish between each parameters.

#3 - Selection sort and sequential search

I chose the selection sort than the bubble sort because selection sort only swaps once for every
pass. But for the bubble sort, it has to swap multiple times for only one pass. Therefore, it would
be less time-consuming and more efficient.

Sequential search is the better search algorithm in comparison to binary search because I know
that the length of the arraylist will not be long. My client showed me a paper of all the flights that
he will use for his presentation and it only contained 13 flights.

Word count: 203 words

User Interface/GUI work

What
Combo boxes:

Radio Button Group:

Table:

OptionPane:

TextField:

Why
Combo boxes:
Can select which Flight attribute to sort in the table and whether my client wants to prioritize the
lowest or highest value first.

Radio button group:
Can choose whether the flight is domestic or international to categorize the flight as either one.

Table:
Represent the inputted data and the calculated data of the various flights. Making it easier for
my client to work with those data.

OptionPane:

Show a message to my client when he/she needs help. Can also give an error message when
my client inputs incorrectly.

TextField:
Another way of displaying data, but only for a specific flight that the client wants/searches for.

Word count: 119 words

Software Tools Used

What
Netbeans

● A popular integrated development environment for Java used programmers
across the world.

Why

1. The GUI components create a very convenient and not overly complicated
interface for my client to use.

2. Have widely accessible pre-programmed codes that I used for graphs and files.
3. Can be coded in Java - a powerful and easy-to-follow programming language.

Word count: 55 words

