
Criterion C: Development

The program is a Java program that accepts Color data three ways.
- A user-inputted text field which converts ints into a Color object.
- A user-inputted file chooser which takes in an image and outputs a

two-dimensional .array of RGB values based median cut algorithm by Sven
Woltmann. (https://github.com/SvenWoltmann/color-thief-java)

- A colorChooser GUI.

List of Techniques
- Selection sort
- Binary search
- Using Java Color class and its utilities
- Use of BufferedImage to load a file through fileChooser GUI.
- Error handling
- if/else, for loops, toString(), template classes,
- JColorChooser GUI + related functionality
- ArrayList of Palette objects.
- Array of objects
- OOP Features: Encapsulation, polymorphism, inheritance.
- Switch statements
- GUI tabs and popup menus.
- Use of flag values.
- JTable GUI + related functionality
- Two-dimensional and one-dimensional arrays

Structure of the Program
My program is a database program that stores an arrayList of Palette objects. The
palette objects consist of its attributes and an array of Color objects. The main classes
of my program is the Palette class, the GUI class, and the BinarySearch and
SelectionSort classes, which sorts and searches the arrayList of Paletes.

The algorithm that extracts a palette from an image is located in a separate package.
By breaking my program into classes and packages, I have taken an Object-Oriented
approach. The use of template classes allow me to utilize the OOP features of
polymorphism and encapsulation, as well as abstraction.

- Polymorphism: when an object can take more than one form. The Palette class
contains an overloaded constructor, illustrated below.

https://github.com/SvenWoltmann/color-thief-java

- Encapsulation: when the methods and attributes of a class is made private and

can only be accessed through public get and set methods. The attributes of the
Palette class is made private and made accessible through public get methods.
Such as getPaletteName()

- Abstraction: Sven Woltmann’s algorithm is quite complex. However, the use of
separate class allows me to only use the features of the algorithm that are
relevant to me, such as getPalette(BufferedImage sourceImage, int
colorCount)

Data Structures Used

Array of Objects
Working with palettes means I have to instantiate and initialize several arrays of Color
objects into certain GUI elements. In order to save time, I have created several methods
which will allow me to my array of Colors to interact with my GUI elements.

- displaySwatches(...) creates and array out of 10 JTextFields and
displays the colors array in the corresponding textField.

- A static array is appropriate because the size of palettes are fixed to 10
swatches.

ArrayLists
Palettes are stored in an arrayList of palettes. The use of a dynamic structure allows me
to save memory to accommodate for the dynamic size of the array.

Main Unique Algorithms

- Color Thief
- This program utilizes Sven Woltmann’s ColorThief algorithm, which grabs a

representative color palette from a given image. It uses the Median Cut sorting
algorithm, which sorts data into sets by recursively cutting the data set at a
median point. This algorithm is most often used for color quantization, which is
the process of reducing the number of colors in an image while retaining the
visual qualities of the image.

- Overview of Median Cut Algorithm

- For any form of color quantization, a 3d clustering algorithm is ideal because we
are dealing with three color channels: Red, Green, and Blue.

- The process involves putting the RGB values of all pixels into a bucket
- Find out which RGB color channel has the greatest range.
- Sort the values inside the bucket.
- Move the upper half of the bucket into a new bucket and repeat the same

process until the desired number number of buckets is reached (base
case, must be power of two)

- Buffered Image
- This program utilizes the BufferedImage subclass which extends the Image

superclass. This allows the user to create a palette from any uploaded image. A
the BufferedImage was used because it allows the application to access and
operate directly on the image. Compared to the image superclass, it is more
efficient and useful for the following reasons

- It generates a ColorModel and Raster for the image.
- It stores and manages the image in memory.
- Allows specific pixels in the image to be accessed.

Pseudocode for buffered image

Show fileChooser dialog;

File file = selected file from file chooser

Try{

Image img = read file;

Image resizeImage = scale the image(width of JFrame, height of

JFrame, Smooth scaling);

ImageIcon icon = resizedImage //make displayed image an

ImageIcon;

Set icon of JLabel as icon;

}

Catch(IO Exception //general error handling){

Show popup menu “Please select an image”

}

- Java Color Class
- This program heavily utilizes the java.awt.color class. Using this class

allows me to use its associated methods, and also saves time because I don’t
have create a new way to represent color in my IDE.

- The color class has multiple constructors (polymorphism)

- Color(r, g, b)

Pseudocode for Color class example

Declare an array of 10 Colors called colorsArray

Loop through a = 0, a < 10

Color c = new Color(paletteArray at [a][0] //red component,
paletteArray at [a][1] //green component, paletteArray at [a][2]
//blue component)
coloarsArray at [a] = c

- Color.getRGB

- Color.WHITE

- color.getGreen, color.getRed, color.getBlue

- color.toString()

Sample Input Sample output Notes

Using
color.getGreen,

color.getRed,

color.getBlue

and

color.toString()
to display RGB color
components as a
String

- Display Palette
- This algorithm displays a palette from a table selection using the JTextField GUI

Element. Using an arrayList allows me to easily find and display these palettes.
Pseudocode

Int index = selectedRow of JTable;

Array of Colors displaySelected = get Palette object from

paletteList @ index;

Display swatches (utilizing displaySwatches method. See

displaySwatches() method);

Software Tools used
This program used the NetBeans IDE. Netbeans is ideal because it allows me to work in
an Objected oriented way through the creation of classes and packages. It also has a
Java library containing useful tools, such as java.awt.color. It also lets me add and
program GUI elements. The GUI tab is very simple and easy to use, with several useful
GUI features.

Word Count: 824

