
Criterion C: Development

1. Introduction
The product is a Java program coded on Netbeans. Netbeans was selected because graphical user
interface for the application can be made easily with Java’s swing tools. The application is an investor
transactions tracker, which tracks all stock exchange transactions that user enters. Netbeans organizes
classes nicely and allows programmer to set the interaction between user and application
conveniently.

Word Count: 59

2. Summary List of All Techniques
- For loops with i++, and i--
- Nested loops
- Methods returning a value, Methods taking in parameters
- Arrays, ArrayLists [of Strings, of Objects]
- User defined objects made from an OOP "template" class
- Encapsulation of private attributes with accessors and modifier methods
- Simple and compound selection (if/else)
- Sorting, and in particular sorting ArrayLists of objects based on one key attribute
- Saving to a file
- Retrieving data from file, turning them into ArrayLists
- Error handling (outlined in criterion A under functions and B under testing plan)
- GUI tabs
- Use of a flag value (such as -999, or "not set yet")
- Parsing a file using StringTokenizer
- Inheritance between a superclass and a subclass
- SpecificArrayList.add(), SpecificArrayList.remove()
- Loop to move all elements of ArrayList down one index after removing value
- Use of ||, &&, ^, !, .equals() on conditionals
- Use of global variables that are manipulated accordingly in each method in order to determine

when user can call certain methods
- Adding elements into combobox while program is running
- Coded user login, create account
- Parsing values into appropriate data type.

- Parsing ints to doubles, doubles/ints to string
- Use of GUI features: Textfield.setText(), ComboBox.getSelectedItem(), etc.
- Printing out data on JTable using for loop (with conditionals(if/else))
- Math.round()

Word Count: 0 (Bulleted List)

3. Structure of the Program
The main class which is ran when when the user uses the program is a graphical user interface class,
or GUI class. GUI allows users to interact with the program, input data and view outputs such as the
different variables of each previously entered transactions in a neat and organized way.

A User and Transaction object template classes was also made in order store users and transactions
data in an organized way. With these template classes, ArrayLists of them can be made and each
variable can be stored within each instance of a User or Transaction and the objects together in an
ArrayList. The information can then be access through arrayList.TemplateClass.getVariable(), such as
users.User.getUserName(0). Aggregation is applied as users have transactions with a ‘has a’ or
ownership relationship between the two classes.

Three of the remaining classes are for searching transaction class and saving and retrieving users
information and transactions. The first class is for sorting and searching transactions with 8 methods
to sort transaction according to 4 variables from min to max and max to min. Reading and writing
transactions with 2 methods, for saving and retrieving transactions and a class for reading and writing
users’ information which has 2 methods for reading and writing usernames and passwords and 2
methods for reading and writing stock names list for each user.

With classes, and object oriented programming, properties of encapsulation, use of constructors and
abstractions are used. With encapsulation, attributes are private and can only be accessed and changed
when appropriate accessor and modifier methods are called. Abstraction allowed me to work more
efficiently with testing, coding and identifying problems by focusing on one problem at a time.

Word Count: 294

4. Data Structures Used
1. ArrayList

ArrayLists were used to store elements of objects and strings as ArrayLists are dynamic, thus its size
changes according to how many elements it contains, which saves memory. ArrayLists also share
some properties with arrays, and can be searched and sorted like arrays. In this case, ArrayLists of
transactions are made and can be sorted according to specific variables.

2. Files

The File class was used to save/store data of attributes and can be accessed after program stops
running and restarts again. This is done through the use of the FileWriter and FileReader classes.

Word Count: 95

5. Main Unique Algorithms
1. User Log In

Every time a user logs in, read transaction and read user information files methods are called to
retrieve the appropriate data of the user input. The stocks for the combo box is retrieved as an
ArrayList, put into an array, and entered as parameter into combobox model, as combo boxes can only
take in String arrays. Turns boolean loggedIn true in order to access functions in application.

2. Entering transactions and all associated error handling

^ All attributes are defined and calculated within method before being entered into Transaction
constructor, as a form of abstraction. Each attributes are assigned obscure values that would be
instantly noticeable in program testing with semantic error. If any of the information textfield is blank,
an error will occur.

^ Buy and selling will result in different calculation and assignment of values for the attributes in
Transaction constructor, thus conditional/compound selection is applied to see whether user has
entered buy or sell transaction.

Error handling above and below for every different case.

^ Compound selection/conditional for if new stock checkbox is checked, but old stock name is
entered, the stock name will not be added to combobox stockNamesList ArrayList. If new stock is
entered and stock name does not exist, it is added to stocksNameList and combobox array.

(Below) Resetting all information fillers to default (empty)

^ Adding new transaction with all calculated attributes with parsing of textfield entries.

3. Displaying transactions on transaction table (after applying sorting methods)
(Below) transactions are sorted appropriately (screenshot of sorting methods called not attached, see
full code for reference)

^ New ArrayList made so transactions displayed list can be manipulated without changing ArrayList
with all transactions. Conditionals to add stocks with specific name when specific stock name is
entered into textfield on transactions table tab.

^ Displaying transactions attributes using for loop to go through all boxes on transaction table.

4. Sorting

*For max to min, change minIndex to maxIndex and change ‘<’ to ‘>’
Code based off of from johnrayworth.info selection sort code.

5. File Writing

6. File Reading

Both file reading and writing code manipulated based off of John Rayworth’s work. “Full File Writing
and Reading Project” on Youtube.
Link: https://www.youtube.com/watch?v=3bcl246jlSg&feature=youtu.be

File reading and writing used so user can save data and retrieve information after program has been
relaunched. StringTokenizer class used to separate data on textedit file. Since program does not work
with null ArrayLists, first element is added as empty string “” to prevent null ArrayList.

https://www.youtube.com/watch?v=3bcl246jlSg&feature=youtu.be

7. Deleting Account

^ Error handling, making sure user wants to delete account with layers of user interaction before
account deletion.

After account is deleted, in the users ArrayList, all the elements greater than the index of the deleted
account must be moved down one to close the empty gap and save memory (the purpose of using
ArrayList in the first place).

Saving/reading methods must be implemented right away as the files will not be deleted, but must
make sure that those files are empty so if new user wants to use the username and thus save their data
in those existing files with old file names, they can without carrying over old transactions of deleted
account user.

Word Count: 452

6. User Interface/GUI Work
- Use of GUI: For users to be able to interact with program in a visual user friendly setting.
- GUI components used:

- JTextfields: For user to enter information
- JCombobox: For users to enter information from specific list.
- JButtons: For users to click when entering information.
- JLabels: Notify users what each GUI component is used for.
- JTabbedPane: Organizes user interface (makes it more user friendly) and separate

each function or similar types/related functions into their individual pages
- JCheckbox: Easy way for user to assign true/false for boolean in program code.
- JTable: Used to display large amounts of data in an organized way.

Word Count: 0 (Bulleted List)

7. Software Tools Used
NetBeans, an integrated developmental program for java, was used in the development and coding of
the application. NetBeans software was chosen as it has user friendly GUI interface and prewritten
code libraries and can be simply used for object oriented programming, which is preferred for the
development of this application.

Word Count: 50 Full document Word Count: 950 Criterion A+B+C: 1596

