
Criterion B: Solution Overview

Inputs/Outputs:
User Login UI

Input Data Type Example

Existing username String “sam234”

Existing user password String “samisgreat787”

New username String “dorothy999”

New user password String “0819237doro”

Confirm userpassword String “0819237doro”

Output Data Type Example

Error Handling String ‘Username already exists’

Enter New Transaction UI

Input Data Type Example

Buy/Sell Boolean isBuy == true/false

Stock Name String “PTT”

Data of Transaction String “9 January 2019”

Number of Shares in
Transaction

Integer “500”

Price Double “2.81”

Dividends per Unit Double “0.60”

Output Data Type Example

Error String “Sale invalid”

Stock Specific Statistics UI

Input Data Type Example

Display Information For (Stock
Name)

String “Apple”

(Theoretical Sell) Stock Name String “Apple”

(Theoretical Sell) Number of
Shares

Integer “1000”

(Theoretical Sell) Price Double “50.60”

Output Data Type Example

Total Shares Owned String “Sale invalid”

Total Money Invested Double “400000”

Current Average Price Double “47.50”

Total Dividends to Date Double “5067.92”

(Theoretical Sell) Profit Double “6009.87”

Stock Specific Statistics UI

Input Data Type Example

Display Stock String “Apple”

Sort by String “Date”

Order to sort String “Recent First”

Output Data Type Example

Transactions Table ArrayList<Transaction> n/a (Output data on table)

Word Count: 0

Prototyping Process
Initial Prototype (First Draft + Client Annotation)

Prototype 2 Example

Prototype Final Stages

Word Count: 12

Class Diagram:

*In the process of programming, it was more appropriate to skip the stock aggregation step and have
user have transactions instead of user has stocks which has transaction. The UML was created before
the program was made. In program, stocks class is not utilized, and initially User and Transaction
class did not have a direct aggregation relationship, but in the programming process, it was easier to
just have user have transactions (1 step aggregation), rather than have User have stocks have
transactions (2 step aggregation).

Word Count: 85

Chronological Development:

1. Interview Client - Create GUI
a. First interview

i. Create tabbed pane for user login for security purposes
ii. Create 2nd tabbed pane for entering transactions

iii. Create 3rd tabbed pane for display specific stock statistics
iv. Create 4th tabbed pane to display custom transaction table

b. Second interview
i. Rework GUI, change information to display on transactions table to suit

clients needs/add new features users might think of
2. Create template classes
3. Create sorting class
4. Programming

a. User login tab
i. Create username

ii. Login
iii. Delete account

b. Add transaction tab
c. Display specific stocks tab
d. Display transactions details table tab
e. Error Exceptions

5. Create classes for sorting methods/functions
a. Methods for sort according

i. Date (1 for min to max, 1 for max to min (2 in total))
ii. Price (1 for min to max, 1 for max to min (2 in total))

iii. Number of shares (1 for min to max, 1 for max to min (2 in total))
iv. Transaction profit (1 for min to max, 1 for max to min (2 in total))

b. Sorting algorithm

Loop for int i from 0 to size of arraylist transactions - 1
minIndex = i
Loop for int j (= i + 1) from 0 to size of arraylist transactions
If(transactions.get(i) < (transactions.get(minIndex)

minIndex = j
End if
If minIndex != i

Transaction temp = transactions.get(i)
set transactions.get(i) = transactions.get(minIndex)
set transactions.(minIndex) = temp

End if
End loop

6. Program methods for saving methods (reading and writing information)

a. Reading and writing transactions class
i. Method for saving transactions

ii. Method for retrieving saved transaction data
b. Reading and writing users information class

i. Method for saving stocks name list
ii. Method for retrieving saved stock name list data

iii. Method for saving users list
iv. Method for retrieving saved users list

7. Implement saving methods into program
8. Execute testing plan to test program

a. Fix errors
b. Program missed error handlings

9. Final interview with client
a. Instruct client on how to use program
b. Receive feedback
c. Fix unaccounted error handling issues

Word Count: 0 (Bulleted List)

Testing Plan:
Testing plan, ideally, will go through essential success criterias outlined in Criterion A document.

- Check the login page to see if read and write of users list and transactions Arraylist is working
properly.

- Test using the program to see if there are errors that causes program to stop running.
- Check if transactions entry work as it should.

- Enter transaction entry, but instead of the textfields clearing as the actual program
would work (in anticipation of a new transaction entry), it would display the variables
of transaction itself onto the appropriate textfield using the
transaction.get(MostRecent).getVariable() method to check whether input of variable
functions properly.

- Check if the variables of the transactions that require calculations work properly. Check if
display table is working properly.

- By entering one buy transaction and one sell transaction and checking whether the
data on the display table is correct, specially those that require calculations within
setting the transaction parameters such as average price to date, number of shares to
date and net profit.

- Check if information displayed on stock specific statistics functions properly
- Enter two buy transactions with the same stock name.
- Look at the information on the last transaction of the stock on the display table.
- Display stock specific statistics on stock specific statistics page and see if data

matches that of last transaction listed on transaction table of that stock.
- Check if the theoretical selling extra feature in the stock specific statistics tab is working

properly.
- Enter a buy transaction, check the statistics of specific stocks.
- Enter made up price and amount to sell and check if value matches manual

calculation.
- Check if the sorting of the data in the transaction table works.

- Enter transactions with different values of price, date, number of shares and
transaction profit.

- Check save function.
- Click the save button and go check if files are created to store transactions and users

list data.
- Check the read function

- After saving some users and transactions, relaunch program and login and see
whether saved transactions show up on program correctly.

- Error Checking
- //User Login Tab
- Entering any data before login

- Error message: Login Required
- Create account with a username already used

- Create account with ‘name’, try to create another account with ‘name’ as
username. Result: Error message

- Enter confirm password different to new password when making new user.
- Error message: New Password and Confirm Password does not match

- Create account without username
- Error message: Please enter username

- Enter username that doesn’t exist
- Error message: Invalid Username, username does not exist.

- Login with wrong password
- Error Message: Incorrect password, please try again.

- //Enter Transactions Tab
- Leave any combination of stock name, number of shares, dividends per share and

price textfield blank.
- Error Message: Please enter all transaction information

- Enter transaction without checking buy or sell
- Error message: Please select either buy or sell

- Enter transaction without checking existing stock or new stock
- Error message: Please check either ‘existing stocks’ or ‘new stock’ check box

- Enter a sell transaction that sells more shares of a stock than owned
- Error message: Selling more shares than owned

- //Stock Specific Statistics Tab
- Display stock that does not exist in database

- Error Message: No data for stock

Word Count: 150 (Bulleted List not included)

Document Total Word Count: 247

Criterion A + B Word Count: 646

