
Introduction
My program is an address book with the purpose of centrally keeping track of my father's
contacts. I wrote it and built the GUI in Netbeans with Java.

Summary List of Techniques

● For loop
● If statements
● Arrays
● ArrayLists
● Encapsulation
● Gui tabs
● Gui buttons
● Gui labels
● Gui combo boxes
● Gui tables
● Gui dialogue boxes
● Parameter passing
● Nested loops
● Adding to arraylists
● Deleting from arraylists
● Editing elements of arraylists
● Searching arraylists
● Printing custom log messages to the console
● Template class

Program Structure
Because my client isn’t comfortable with the command
line I didn’t give the program a modular UI, instead I
tied everything together in the MainGUI class. I created
separate template classes for the object (Person) that is
instantiated to form the database, and to modularize
objects with larger functions like searching the database.
Neither Java nor OOP are particularly well suited to my
simple needs (I'd rather store my data in a .txt file and
parse it with a shell/gawk script), but OOP is the focus
of my IB CS class and I am more comfortable with it
and Java than with shell scripting. However, the use of
Java comes with the benefit of portability; a shell script written in GNU/Linux may not run well
on a Mac and would certainly not work on a Windows machine.

Data Structures Used

● The main data structure I used were ArrayLists, one of which was used as the heart of the
database, and others of which were used for smaller peripheral tasks of indeterminate
size, like temporarily storing search results. I chose to use ArrayLists for this due to their
flexibility in size when compared to Arrays. When dealing with larger datasets, lists, as
fully unbalanced trees that keep each node at different places in storage or memory, are
infinitely scalable and more inherently efficient in their use of storage space than Arrays.

● In a few cases where I’d be dealing with a fixed number of things, I decided to use
Arrays, which store all their data in a linear block of storage or memory. Because of this,
individual units of data do not need to be accompanied by memory address pointers for
parent and child nodes. This allows Arrays to store more data in a given block of storage
than trees, however if elements in the Array are not in use, then storage space is being
wasted. Furthermore, if the Array is full (that is, making full use of the storage space
allocated to it) then there is no way to add to it without making another, larger Array
elsewhere in storage and copying the original data to it, resulting in a specifically sized
block of unused memory addresses.

Algorithms

● The most notable algorithm I wrote was used to search and query the database. It loops
through the contents of the main ArrayList and assign any instances of the Person class
whose name or category attributes matches a user-defined pattern to a temporary
ArrayList. The temporary ArrayList is then sent into the next algorithm in this list to be
written to a table in the GUI. Pseudocode of the searching algorithm follows:

Method: search peopleArrayList
Create a new ArrayList named searchResultArrayList
Loop through peopleArrayList

If name of current element in peopleArrayList = searchTerm then
Add the current element in peopleArrayList to
searchResultsArrayList

Return searchResultsArrayList

● All of the user’s entries in the database are displayed in a table, the pseudocode of the
algorithm used to write instances of Person to the table follows:

Method: writePeopleToTable
If peopleArrayList has fewer elements that peopleTable has rows then

Loop through peopleArrayList

Set columns 1 and 2 in the current row in peopleTable
equal to the name and category in the current element in
peopleArrayList

User Interface
The UI for my program is a GUI made with Java Swing Components using Netbeans'
drag-and-drop tool. I chose to use this tool instead of writing the Swing code myself due to its
relative speed and ease of use. The final GUI:

While text-based user interfaces are usually faster, more powerful, and more elegant than most
graphical interfaces, they usually have a relatively high learning curve. My client, though
moderately tech-literate, prefers GUIs over CLIs due to their lower learning curve. Furthermore,
his choice of OS (MacOS) is centered around GUIs, such that using a CLI program in an elegant
fashion would require extensive customization when compared to other operating systems like
GNU/Linux.

Software Tools Used
For the programming stage I would have prefered to use a simple, lightweight, and comfortable
text editor like Vim or GNU/Emacs, however the relative difficulty of manually writing Java
Swing elements forced me to turn to the Netbeans IDE. Beyond it's GUI building tools, I only
used the very basic text editing features of Netbeans, prefering to manage backups on GitHub
with the command-line git client built into my OS. I also made extensive use of GNU/Emacs'
Org-Mode to work on criterions A, B, and C. My coding environment:

Word Count:​ 746

