1. A short introduction

| used NetBeans to develop my Java program, using Java’s Swing tools to create an
operationalize the GUI. In doing so, the program was able to store, and display a list of recipes.
Additionally, the program automatically made certain calculations such as profit margins.

2. Summary List of All Techniques
- Parameter Passing
- Return Methods
- Array List
- For Loops
- Nested For Loops
- Encapsulation
- Privatizing variables
- Inheritance
- Pointing at the same object between two classes
- GUI Tabs
- GUI Table
- GUI buttons
- Saving and Loading Recipes
- Tokenizing data
- Error Trapping when inputting recipes
- Multiple Constructors
- Try-Catch-Throw Errors
- Log exceptions
- Error Trapping
- “matches” method to ensure only digits or only letters
- JOptionPane Prompts
3. Structure of the Program
In total, | use three GUI classes, one Saving and loading methods class and two Object
Classes. The “main GUI” is where Recipes are centrally inputted and displayed. It contains the
instantiation of the variable: recipeList which is pointed at by other classes.

When the user wants to add ingredients to a recipe, a button from the main GUI opens a second
Ingredients Builder that saves a collection of ingredients as an Array List into the recipeList
housed by the main GUI.

The “details GUI”, is opened upon the press of a button in the main GUI. The main GUI passes
the attributes of a selected recipe from recipeList to details GUI which then visually displays
them and allows the user to edit them. Upon closing the details GUI, the edited attributes are
saved to same recipelist as the details GUI points to the same variable housed by the main
GUL.

4. Data Structures Used

The only non-primitive data structure used were Arraylists. Recipes were stored in an Arraylist
of Recipes and within this Arraylist, another Arraylist of Ingredient objects was stored. | used an
Arraylist because it is a dynamic data type, and neither recipes or ingredients are consistent
throughout the use of the programs. Recipes and ingredients will be added and removed by the
user and as such it is most efficient to use a datatype that can adjust in size accordingly.

5. Main Unique Algorithms

My program stores Recipes in an arraylist which itself has contains an ArrayList of Ingredients.
As such the program is storing essentially an Array of ArrayLists, combined with other
parameters. To save this data, each parameter must be saved individually in a particular order.
When loading, each parameter must be loaded in the same order as they were saved. The code
to save each parameter is shown below.

String fileName= "Recipes.txt";

FileWriter fw= new FileWriter({fileMame);
fw.write{""+r.size());

fw.write(":");

for{int count=@; counter.sizel);count++) {
fw.write({r.get{count).getName());

fw.write{":");

fw.write{r.get{count).getCalories());

fw.write(":");

fw.writel{r.get{count).getMethod{));

fw.write(":");

fw.write(""+r.get{count).getPrice()});

fw.write(":"};

fw.write(""+r.get{count).getServings{));

fw.write{":");

fw.write(""+r.get{count).getIng().size());

fw.write(":");

for{int i=@; i< r.get{count).getIng().size{);i++}{
fw.write{""+r.get(count).getIng().get{count).getIngName());

fw.write(":");
fw.write{""+r.get{count).getIng({).get{count).getQuantity());

fw.write{":"};
fw.write(""+r.get{count).getIng().get{count).getUnit());

fw.write(":");

fw.write(""+r.get{count).getIng(}.getl{count).getCost(}};

fw.write{":");

¥

¥

Evidently, | utilise two nested for-loops. The first is simply controlling for whenever a new recipe
begins to be saved in the “Recipe.txt” file. The second, controls for when each ingredient (and
its encapsulated parameters) are saved in the same file. They must be saved due to the
algorithm used to load each recipe:

try
{

FileReader fr = new FileReader("Recipes.txt");
BufferedReader br= new BufferedReader{fr);
String readInfile=br.readLine()};

StringTokenizer st= new StringTokenizer({readInfile,”:");
int rLimit=Integer.parseInt(st.nextToken{));

for{int recipeCount=@;recipeCount=rLimit;recipeCount++){
r.add(new Recipe());

String name=st.nextToken{);

int calories=Integer.parseInt(st.nextToken());
String method=st.nextToken{);

double price=Double.parseDouble(st.nextToken());

double servings=Double.parseDoublelst.nextToken());
r.get{recipeCount).setMame(name);
r.get{recipeCount).setCalories{calories);
r.get{recipeCount).setPrice(price};
r.get{recipeCount).setMethod(method);
r.get{recipeCount).setServings{servings);
ArrayList<Ingredients> ingr=new ArraylList<>();
int iLimit=Integer.parseInt(st.nextToken{));
for(int ingc=@; ingc<ilimit;ingc++)

{
String ingN=st.nextToken();
double ingQ=Double.parseDouble(st.nextToken());
String ingU=st.nextToken();
double ingC=Double.parsebDouble(st.nextToken());
/4 r.get{recipeCount).getIng().add{new Ingredients{ingM, ingQ, ingU,| ingC))
ingr.add({new Ingredients{ingN, ingQ, ingl, ingC});
}
r.get{recipeCount).setIng{ingr);

ingr.clear();

In the algorithm above, the data that was previously saved is tokenized. This means that each
parameter is separated and treated as an individual token to be loaded. The separation occurs
on the instance of a “.”. Referring back to the saving algorithm, a colon separated each
parameter entry.

Below is the pseudo-code version of the algorithm:

FileReader /finitialize reading methods
BufferedReader /{ Initialize buffer reading
StringTokenizer(BufferedReader.readLine, “.") /fInitialize methods to tokenize data
RecipelList //ArrayList where the recipes will be loaded
RecipeLimit=StringTokenizer.nextToken //How many recipes to be loaded
Locp from 0 to RecipeLimit
Name=5tringTokenizer.nextToken
Calories=StringTokenizer.nextToken
Method=5tringTokenizer.nextToken
Price=StringTokenizer.nextToken
Servings=StringTokenizer.nextToken
Add new recipe to RecipeList using Name, Calories, Method, Price, Servings
IngredientsList //ArrayList where ingredients are located for each recipe
IngredientsLimit=String Tokenizer.nextToken //How many ingredients for a given recipe
Loop from O to IngredientsLimit
iName=StringTokenizer.nextToken
iQuantity=StringTokenizer.nextToken
iUnit=StringTokenizer.nextToken
iCost=S8tringTokenizer.nexiToken
Add new ingredient to IngredientsList using iName, iQuantity, iUnit, iCost
Add IngredientsList to the RecipeList entry being loaded

My GUI mostly uses editable JtextFields so that the user can input data that is presumably short
in length. The only parameters for which | don't use JTextFields are the Method and Ingredients.
Method extends past a single line of text into paragraphs and numbered steps. As such a
JTextArea was used. Meanwhile, Ingredients is a list of specified objects, as such as JList was
used so that the user could select from a pre-generated list. These ingredients were displayed
in a JTextArea.

6. User Interface/GUI Work
My GUI uses various swing components to error-trap and facilitate use by the client. An
example is given below for when the user enters letters instead of numbers for servings.

File Edit Help

R View Recipes Calculations]

Name: ABC | Selling Price
Servings: XXX ! 3
Method
PR ® Message
.:'/E > Please only enter numbers in servings

| Add Ingredients]

| Submit |

| Save And Exit |

Combo boxes are used to in displaying a list of recipes for the client so that the client does not
have to type in the full name of a recipe to search.

Get Details:
Recipe2
Recipe3

Radio Buttons are used so that the client can not only view all options for Ingredient units, but
also select and reselect at their behest.

[) Cups () mL || Tablespoon
[) Grams (| Teaspoon

One biggest swing components used was a JTable. This functioned as the main display for the
recipes where the client could view upwards of 20 recipes in a single screen. Furthermore the
table allows the client to also view certain crucial elements of teh recipe such as calories,

servings and cost.

Marmne Servings Cost Calories
Recipel 4.0 3.0 10
Recipe? 4.0 42.0 10

Recipe3 4.0 42.0 10

7. Software Tools Used

3 £

B D@ [@ F B b B G-

"E« RecipeDatabase Nicolas - NeiBeans IDE 8.1

ijeme{ Files \ Services \

@

StartPage © [[5] Recipejava © [[<] SaveLoad java © [[} GUIProto java © |1} IngredientsBuilderjava ||| Ingredients.java | lsi) iPrototy.

¥ & RecipeDatabase_Nicolas ‘W‘ @ @. B - lq % ,5l EIEI @ {b DD H @ =)
v [H Source Packages 505 —
¥ [nicolas 506 IngredientsBuilder ib= new IngredientsBuilder{currentPos-1, recipelist);
[E DetailsGuLjava 507 ib.setVisible(true);
|ef GuiProto.java 508 TODO add your handling code here:
(=8 1APrototy 509 L T
& ingredients. 510
IngredientsBuilder.java 511| @ private void submitButActionPerformed(java.awt.event.ActionEvent evt) {
|€ Recipe.java 512 ries ne price ng cost method ingredients
@ Saveload.java 513 (88 ributes of a Recipe Object
» [Test Packages 514 / T obj nd save to text file.
» [8 Libraries 515 int calories L on
» B Test Libraries 516 String name=nameField.getText();
517 double price
518 double se Double.parseDouble(servingField.getText());
519 double cpst;//reliant on]
520 String method= methodsArea.getText(); =
521 if{hasSetIng)//Series of If statemes error check to make sure the right data has| been put in the right f:
522 {
Navigator € Al 523 if{!nameField.getText().equals("")){
| Meml :| | <empty> : |[E]] 524 if{!servingField.getText().equals("")){
S —— 525 if(!servingField.getText({).matches("[n{
£ 526 if(!methodsArea.getText().equals(
ﬁ‘f glened.s Ohjeer 527 hasSetIng=false;
W gpabObjectah]) : bookian 528 recipeList.get(recipeList.size()-1).setName({nameField.getText());
% finalize() 529 recipeList.get{recipeList.size{)-1).setMethod(methodsArea.getText());
O getClass(: Class<7> 530 recipeList.get{recipelList.size()-1).setServings(Double.parseDouble(servingField.getText()));
@ hashCode() : int 531 nameField.setText("");
@ notify() 532 servingField.setText{"");
@ notifyAll() 533 methodsArea.setText{"");
@ toString() : String 534
@ waitilong timeout) 535 }
@ wait(long timeout, int nanos) 536 else
@ wait0) 537 JOptionPane.showMessageDialog(null, "Enter Method Please");
538 }
535 else
- 540 JoptionPane.showMessageDialog(null, "Please only enter numbers in servings");
Mgl O] @IS B a8l E EAL x
ajl 513:61 [INS

The NetBeans Integrated Development Environment was used to develop this program. It
allowed me to program in Java from my computer. Furthermore, using netbeans allows for easy
and repeated compilation so as to test the program on different computers and ensure
compatibility. Lastly, the refractor tools where highly useful when variables needed to be
renamed throughout a large class.

