
1. ​A short introduction
I used NetBeans to develop my Java program, using Java’s Swing tools to create an
operationalize the GUI. In doing so, the program was able to store, and display a list of recipes.
Additionally, the program automatically made certain calculations such as profit margins.

2.​ Summary List of All Techniques

- Parameter Passing
- Return Methods
- Array List
- For Loops
- Nested For Loops
- Encapsulation

- Privatizing variables
- Inheritance
- Pointing at the same object between two classes
- GUI Tabs
- GUI Table
- GUI buttons
- Saving and Loading Recipes

- Tokenizing data
- Error Trapping when inputting recipes
- Multiple Constructors
- Try-Catch-Throw Errors

- Log exceptions
- Error Trapping

- “.matches” method to ensure only digits or only letters
- JOptionPane Prompts

3. Structure of the Program
In total, I use three GUI classes, one Saving and loading methods class and two Object
Classes. The “main GUI” is where Recipes are centrally inputted and displayed. It contains the
instantiation of the variable: recipeList which is pointed at by other classes.

When the user wants to add ingredients to a recipe, a button from the main GUI opens a second
Ingredients Builder that saves a collection of ingredients as an Array List into the recipeList
housed by the main GUI.

The “details GUI”, is opened upon the press of a button in the main GUI. The main GUI passes
the attributes of a selected recipe from recipeList to details GUI which then visually displays
them and allows the user to edit them. Upon closing the details GUI, the edited attributes are
saved to same recipeList as the details GUI points to the same variable housed by the main
GUI.

4.​ Data Structures Used
The only non-primitive data structure used were Arraylists. Recipes were stored in an Arraylist
of Recipes and within this Arraylist, another Arraylist of Ingredient objects was stored. I used an
Arraylist because it is a dynamic data type, and neither recipes or ingredients are consistent
throughout the use of the programs. Recipes and ingredients will be added and removed by the
user and as such it is most efficient to use a datatype that can adjust in size accordingly.

5.​ Main Unique Algorithms
My program stores Recipes in an arraylist which itself has contains an ArrayList of Ingredients.
As such the program is storing essentially an Array of ArrayLists, combined with other
parameters. To save this data, each parameter must be saved individually in a particular order.
When loading, each parameter must be loaded in the same order as they were saved. The code
to save each parameter is shown below.

Evidently, I utilise two nested for-loops. The first is simply controlling for whenever a new recipe
begins to be saved in the “Recipe.txt” file. The second, controls for when each ingredient (and
its encapsulated parameters) are saved in the same file. They must be saved due to the
algorithm used to load each recipe:

In the algorithm above, the data that was previously saved is tokenized. This means that each
parameter is separated and treated as an individual token to be loaded. The separation occurs
on the instance of a “:”. Referring back to the saving algorithm, a colon separated each
parameter entry.

Below is the pseudo-code version of the algorithm:

My GUI mostly uses editable JtextFields so that the user can input data that is presumably short
in length. The only parameters for which I don't use JTextFields are the Method and Ingredients.
Method extends past a single line of text into paragraphs and numbered steps. As such a
JTextArea was used. Meanwhile, Ingredients is a list of specified objects, as such as JList was
used so that the user could select from a pre-generated list. These ingredients were displayed
in a JTextArea.

6. User Interface/GUI Work
My GUI uses various swing components to error-trap and facilitate use by the client. An

example is given below for when the user enters letters instead of numbers for servings.

Combo boxes are used to in displaying a list of recipes for the client so that the client does not
have to type in the full name of a recipe to search.

 Radio Buttons are used so that the client can not only view all options for Ingredient units, but
also select and reselect at their behest.

One biggest swing components used was a JTable. This functioned as the main display for the
recipes where the client could view upwards of 20 recipes in a single screen. Furthermore the
table allows the client to also view certain crucial elements of teh recipe such as calories,
servings and cost.

7. Software Tools Used

The NetBeans Integrated Development Environment was used to develop this program. It
allowed me to program in Java from my computer. Furthermore, using netbeans allows for easy
and repeated compilation so as to test the program on different computers and ensure
compatibility. Lastly, the refractor tools where highly useful when variables needed to be
renamed throughout a large class.

