

/*CRIT B IS DONE BEFORE PROGRAMMING*/
Input/Output Tables
Input Data Type Example

Name String "Brownies"

Servings double 1.5

Ingredients String "1.5 Cups Flour"

Methods String "1. Preheat Oven"

Output Data Type Example

Name String "Chocolate Cake"

Servings double 3.5

Ingredients String
"3 tablespoons of
Sugar"

Methods String
"1. Mix all
ingredients"

Price double 530.0

ProfitMargin double 43.5

Cost Double 6.5

New Servings
Ingredients (Strings within multiple instances of
class Ingredients) “4.5 grams”

Testing Plan

Input Normal Value Border Value Abnormal Value Extreme Value Other

Recipe
Name

“Brownies”
(String)

Empty: display
jOptionPane
Message“Please
input Name”

No Letters(only
numbers):
jOptionMessage
“Please input
Alphabetical
name”-not parsed

15+ Characters:

jOptionMessage
“Reduce name
length to avoid
format errors”-Not
parsed

n/a

Method “First Step…
Second
Step…”(String)

Empty: jOptionPane
Confirm Dialogue
“Are you certain there
is not method?”

N/a n/a n/a

Ingredients
Name
JList
ComboBox

Flour (String) n/a

n/a n/a n/a

Ingredient
Quantity

1.0 (double) Empty: display
jOptionPane
Message“Please
input quantity”

Non-numerical
jOptionMessage
“Please input
numerical
quantity”

n/a n/a

Ingredient
Unit
ComboBox

“Grams” (String) n/a n/a n/a n/a

Servings
ComboBox

1.5(double) n/a n/a n/a n/a

Ingredient
cost

34.5 Empty: display
jOptionPane
Message“Please
input cost”

Non-numerical
jOptionMessage
“Please input
numerical
quantity”

n/a n/a

Ingredient
name

“Flour” (String) Empty: display
jOptionPane
Message“Please
input Name”

No Letters(only
numbers):
jOptionMessage
“Please input
Alphabetical
name”-not parsed

15+ Characters:

jOptionMessage
“Reduce name
length to avoid
format errors”-Not
parsed

n/a

1. Create List of Recipes
● Create list of Ingredients to be implemented within Recipes

○ Implement inheritance separating Ingredients into wet and dry
● Populate array with default recipes

2. Create process to save recipe list
○ Allow user to choose directory
○ Create save folder in directory including:

i. Text document with Recipes
ii. Text document with catalog of ingredients

○ Process:
i. Traverse through Recipe array, write into a text document individually
ii. Traverse through ingredients Jlist, write into a text document individually

3. Create process to load recipe list
○ Load recipes into created list

i. Populate “View Recipes” Tab with loaded recipes
○ Load ingredients into Jlist in the ingredients builder

4. Create process for the Recipe builder
○ Create new GUI for user to insert ingredients+quantities
○ Create link between Ingredient GUI and main GUI

i. Ingredients are passed to main GUI text box
5. Create method to input new recipe

○ Add recipe to list
○ Call upon save method

i. Rewrite recipe text file to include new recipe
ii. Rewrite ingredients text file if new ingredients were used

6. Create method to delete recipe
○ Delete from list
○ Call upon save method

i. Rewrite recipe text file to not include deleted recipe.
7. Create method to perform basic calculations

○ Determine what recipes to perform calculations
○ Calculate profit, costs, servings etc. (Methods in the Recipe class,)
○ *This is Pseudocode and therefore does not count in the word count*

i. Profit Margins: ((price*servings)/cost)*100 ///Expressed as percentage///
ii. Servings Converter: reduces or increases ingredient quantities based on

servings desired
temp=ing 1

servingsWant=input
multiplier=servingsWant/servings
loop for i from 0 to ing.size

temp.get(i).setQuantity(temp.get(i).getQuantity*multiplier)

1 ing is an arraylist of Ingredients within each instance of Recipes

newQuants=newQuants+”\n”+temp.get(i).getQuantity
end loop
Output newQuants

iii. Cost:
costSum=0.0
loop for i from 0 to ing.size

costSum=ing.get(i).getIngPrice+costSum
end loop
Output costSum

8. Sort Recipes Alphabetically

loop for j from 0 to numberRecipes
loop for i from 0 to numberRecipes

if recipe[i].getName.compareTo(recipe[i+1].getName) > 0
Recipe temp = recipe[i]
recipe[i]=recipe[i+1]
recipe[i+1]=temp

end if
end loop

end loops
9. Sort Recipes by profit margins (ascending)

loop for j from 0 to numberRecipes
loop for i from 0 to numberRecipes

if recipe[i].getPMarg-recipe[i+1].getPMarg > 0
Recipe temp = recipe[i]
recipe[i]=recipe[i+1]
recipe[i+1]=temp

end if
end loop

end loops

*For client opinions refer to second interview

