
Criteria C

Introduction

I have utilized Netbeans to work on this project. Primarily, I used Java’s Graphical User
Interface (GUI) in order to create what my client asked for. The basic functions of this program
is similar as an actual paper note. For example, my client is a tutor; therefore, this program
allows him to keep track on the fundamental informations of his students such as fullname,
nickname, grade, start date, etc. Difference is that it has sorting and searching function. Client
can find specific student’s information by just type in full name or nickname.

Summary List of All Techniques

Major Technique (client visible technique)

● Searching
● Sorting
● Java GUI

Minor Technique (client invisible technique)

● for loop
● if statement
● Get and Set method
● Multiple class (superclass and subclass)
● Error handling
● ArrayList
● Array of the object
● Conversion of String ↔ Int
● if else
● Pop up
● Use of flag value
● Selection sort
● Linear search
● Encapsulation

Algorithm Overview

1: Get all student’s information from the text field located in add new student panel to the other jTables.

String gender = "Female";
 if (radioMale.isSelected())

{
 gender = "Male";
 }

 // select the selected grade from combo box
 String grade = "";
 grade = gradeBox.getSelectedItem() + "";

 // display staart date in form of : month / day / year
 String startday = (String) dayBox.getSelectedItem();
 String startmonth = (String) monthBox.getSelectedItem();
 String startyear = (String) yearBox.getSelectedItem();

 String startDate = "" + startmonth + "/" + startday + "/" + startyear;

 // Retrieve input → add to the table
 students.add(new StudentClass(fullNameTF.getText(),
 nicknameTF.getText(),
 nationalityTF.getText(),
 gender, grade, startDate,
 subjectTF.getText(),
 recommendTF.getText()));

 counter++;

 // indicate the row
 for (int i = 0; i < counter; i++) {
 mainTable1.setValueAt(students.get(i).getfullName(), i, 0);
 mainTable1.setValueAt(students.get(i).getnickName(), i, 1);
 mainTable1.setValueAt(students.get(i).getnationality(), i, 2);
 mainTable1.setValueAt(students.get(i).getgender(), i, 3);
 mainTable1.setValueAt(students.get(i).getgrade(), i, 4);
 mainTable1.setValueAt(students.get(i).getsubject(), i, 5);
 mainTable1.setValueAt(students.get(i).getstartDate(), i, 6);
 mainTable1.setValueAt(students.get(i).getwhoRecommend(), i, 7);
 } // move to next row

 DefaultTableModel model = (DefaultTableModel) mainTable1.getModel();
model.addRow(new Object[]{null, null, null, null, null, null, null, null, null, null, null, null, null,
null});

 //reset the textfield to blank
 fullNameTF.setText("");
 nicknameTF.setText("");
 subjectTF.setText("");
 recommendTF.setText("");
 nationalityTF.setText("");

 //reset RadioButton and ItemBox
 gradeBox.setSelectedIndex(0);
 monthBox.setSelectedIndex(0);
 dayBox.setSelectedIndex(0);
 yearBox.setSelectedIndex(0);

 // update the number of students
 int numberOfStudent = counter;
 displayTotalTF1.setText(Integer.toString(numberOfStudent));
 displayTotalTF2.setText(Integer.toString(numberOfStudent));

 radioMale.setSelected(true);

 // sync mainTable1 and editTable1
 SyncTable();

}

2: Sorting Table

String boxItem = (String) sortingBoxEdit.getSelectedItem();

 // When inside of the box is " Alphabet "
 if (boxItem.equals("Alphabet")) // if selected item in combo box is search by : Full Name
 {
 SortAndSearch s = new SortAndSearch();
 s.selectionSortOfStudentName(students); // change row to the i / maybe row is better

 if (students.size() <= editTable1.getRowCount()) {
 for (int i = 0; i < students.size(); i++) {
 editTable1.setValueAt(students.get(i).getfullName(), i, 0);
 editTable1.setValueAt(students.get(i).getnickName(), i, 1);
 editTable1.setValueAt(students.get(i).getnationality(), i, 2);

 editTable1.setValueAt(students.get(i).getgender(), i, 3);
 editTable1.setValueAt(students.get(i).getgrade(), i, 4);
 editTable1.setValueAt(students.get(i).getsubject(), i, 5);
 editTable1.setValueAt(students.get(i).getstartDate(), i, 6);
 editTable1.setValueAt(students.get(i).getwhoRecommend(), i, 7);
 }// search the editTable1 and then display on table2
 }
 }

3: Searching Table

String boxItem2 = (String) searchBoxEdit.getSelectedItem();

 // Search by full name when box displays "Full Name"
 if (boxItem2.equals("Full Name"))
 {
 SortAndSearch s = new SortAndSearch();
 int result = s.searchByFullName(students, searchTF.getText());

 if (result == -1) {
 JOptionPane.showMessageDialog(null, "No results found");
 } else {
 int secondCounter = 0;
 for (int i = 0; i < students.size(); i++) {

 if (students.get(i).getfullName().equals(searchTF.getText())) {
 editTable2.setValueAt(students.get(i).getfullName(), secondCounter, 0);
 editTable2.setValueAt(students.get(i).getnickName(), secondCounter, 1);
 editTable2.setValueAt(students.get(i).getnationality(), secondCounter, 2);
 editTable2.setValueAt(students.get(i).getgender(), secondCounter, 3);
 editTable2.setValueAt(students.get(i).getgrade(), secondCounter, 4);
 editTable2.setValueAt(students.get(i).getsubject(), secondCounter, 5);
 editTable2.setValueAt(students.get(i).getstartDate(), secondCounter, 6);
 editTable2.setValueAt(students.get(i).getwhoRecommend(), secondCounter, 7);
 secondCounter++;
 }
 }
 }
 }

This applies for search by nickname and nationality

4: Retrieve all information for edit

updatePanel.setVisible(true);
 panelSelect.setVisible(false);

 // Display current student's information
 DefaultTableModel model = (DefaultTableModel)editTable2.getModel();
 int i = editTable2.getSelectedRow();

 fullNameTF1.setText(model.getValueAt(i, 0).toString());
 nicknameTF1.setText(model.getValueAt(i, 1).toString());
 nationalityTF1.setText(model.getValueAt(i, 2).toString());

 if (radioMale.isSelected()) {
 radioMale1.setSelected(true);
 }
 else
 {
 radioFemale1.setSelected(true);
 }

 // get first two letter from the mm/dd/yyyy
 String s = editTable2.getValueAt(i, 6).toString();
 String upToCharacterMonth = "";
 String upToCharacterDay = "";
 String upToCharacterYear = "";
 upToCharacterMonth = s.substring(1, Math.min(s.length(), 2)); // mm
 upToCharacterDay = s.substring(3, Math.min(s.length(), 5)); // dd
 upToCharacterYear = s.substring(6, Math.min(s.length(), 10)); // yyyy

 gradeBox1.setSelectedItem(model.getValueAt(i, 4));
 monthBox1.setSelectedItem(""+upToCharacterMonth);
 dayBox1.setSelectedItem(""+upToCharacterDay);
 yearBox1.setSelectedItem(""+upToCharacterYear);

 subjectTF1.setText(model.getValueAt(i, 5).toString());
 recommendTF1.setText(model.getValueAt(i, 7).toString());

}

private void updateNewButtonActionPerformed(java.awt.event.ActionEvent evt) {

 // Update the selected row

 DefaultTableModel model2 = (DefaultTableModel)editTable1.getModel();
 DefaultTableModel model3 = (DefaultTableModel)mainTable1.getModel();
 int i = editTable2.getSelectedRow();

 String gender = "Female";
 if (radioMale1.isSelected()) {
 gender = "Male";
 }

 // select the selected grade from combo box
 String grade = "";
 grade = gradeBox1.getSelectedItem() + "";

 // display staart date in form of : month / day / year
 String startday = (String) dayBox1.getSelectedItem();
 String startmonth = (String) monthBox1.getSelectedItem();
 String startyear = (String) yearBox1.getSelectedItem();

 String startDate = "" + startmonth + "/" + startday + "/" + startyear;

 if (i <= 0)
 {
 editTable2.setValueAt(fullNameTF1.getText(), i, 0);
 editTable2.setValueAt(nicknameTF1.getText(), i, 1);
 editTable2.setValueAt(nationalityTF1.getText(), i, 2);
 editTable2.setValueAt(""+gender, i, 3);
 editTable2.setValueAt(""+grade, i, 4);
 editTable2.setValueAt(subjectTF1.getText(), i, 5);
 editTable2.setValueAt(""+startDate, i, 6);
 editTable2.setValueAt(recommendTF1.getText(), i, 7);

 }
 updatePanel.setVisible(false);
 panelSelect.setVisible(true);

Structure of the Program

Figure 1: Main screen

This is the main screen of this program. From the upper part of the figure 1, there are
three tabs which user can selection either, just view table, edit table, or add new student
to the table. Instead of using different jFrames, I used panels to simplify its codes.

Figure 2: jFrame and panels

Since all panels are included in one jFrame, I do not have to use multiple jFrame and
codes that connects each jFrames. In other words, every codes written in this jFrame
can be shared at any class in this jFrame.

Figure 3: Classes

I have used multiple class to create this program; therefore, it requires me to convert
each class as object.

Figure 4: Create object in class

This code is used in EditPage.java (figure3). Without using this object, all codes in
StudentClass.java (figure3) can not be used in EditPage.java. It is possible to combine
all class in EditPage.java, but this is more organized than stuffing all code in a one
place.

Figure 5: Create object in class part 2

This is the different code for creating an object in a class. I have used this to retrieve the
a mechanism of searching and sorting from EditPage.java.

Overall, this is how each class are linked together.

The major reason why I have separated each mechanism in different classes is for
simplicity. If all mechanisms are stuffed in one class, I have to keep track on all codes at
one time when adding or deleting the codes. If there are errors, I need to look over how
and why its occur. Encapsulating the logics, which means separating into small pieces,
is more efficient than working on all codes at once.

Figure 6: List of logic contained in each class (Encapsulation)
● EditPage.java : GUI, the actual application.
● SortAndSearch.java : Logic of sorting / searching
● StudentClass.java : get and set method

This type of program is called Object-Oriented Programming (OOP). In my opinion, the
special thing about OOP is encapsulation because dividing the program into small piece
is very efficient and organize. I can avoid finding through every single lines to detect the
mistakes. In addition, each classes are different thing. Hence any errors in one of the
classes will not affected. So any errors in StudentClass.java does not directly affect on
the codes written in EditPage.java.

Data Structure Used

Figure 1: ArrayList

I used an ArrayList of students object. This object contains multiple attributes, which is
the basic information of the students. For instance, full name, nickname, gender, grade,
start date, nationality, subject of study, person who recommend.

Figure 2: Using ArrayList

For example, when the client wants to search from the table, the comparison between
input and student object is necessary.

Figure 3: Algorithm for searching

ArrayList(StudentClass) = students object. String input = searchTF.getText() = what
user just typed in. This is comparison between full name of the student that is in
students object and what user typed in.

Figure 4: Example of students object

of student Full name NickName Nationality Grade … and more

1st student John Smith John USA 12 ...

2nd student Satou Hiroshi Hiro Japan 10 ...

3rd student Jungseung
Kim

Kim Korea 8 ...

I used ArrayList because I wanted to store each students’ information as sets. From
figure 4, first row of ArrayList students (figure1) stores all information of 1st student’s,
which is John Smith. His nickname, nationality, grande, and more details are only
available in this row. The second row of ArrayList students stores all information of 2ns
student’s, which is Satou Hiroshi. Again, his nickname, nationality, grade, and more
details are only available in this row. This process would repeated as long as the client
are adding new students.

Figure 5: Searching inside of ArrayList

Assuming that my client want to get the information of Jungseung Kim, this is where
ArrayList is useful.

Figure 6

After client inputted Jungseung Kim’s nickname “Kim” in a text field and then pressed
Search button, this “Kim” will be compared with “Kim” that is stored in ArrayList
somewhere. First, “Kim” would compared with 1st ArrayList’s nickname “John”, which is
wrong. Second, “Kim” would be compared with 2nd ArrayList’s nickname “Hiro”, which

is also wrong. Lastly, “Kim”would be compared with 3rd ArrayList’s nickname “Kim”,
which is correct.

Figure 7: Result

As a result, 3rd ArrayList students will be appear on a table because this ArrayList
contain what user is looking for while rest of ArrayList does not. Overall, every single
line of Arraylist Student is the informations of the different students.

User Interface / How GUI Works

1) Main Page

This is the main page.

2) Add information of students

This appears at “Add New Student” tab where client can input his student’s information.

3) Adding information of students

When user clicked Add button, all
inputted information will be appear
in Main Table.

3)Edit Page Overview

This is the overview of the Edit Table tab. Upper part is for sorting. Buttom part is for
searching. This photo have “Refresh button”, but client is no longer require to press this
button due to automation.

4) Sorting

At “Edit Table” tab, the other table will appear. Once user clicked Refresh button, all
information from Main Table would appear in this page. Where user can sort and
search. The table will be sorted by alphabetical order, nickname, grade, gender, etc.

↓

Sorted.

5) Searching

In this text field, user can search student’s information by type in full name. The client
can switch between full name and other conditions.

If inputted name does exist in ArrayList, the result will appear.

Software Tools Used : NetBeans
According to techpedia:

NetBeans is an open-source integrated development environment (IDE) for developing
with Java, PHP, C++, and other programming languages. NetBeans is also referred to
as a platform of modular components used for developing Java desktop applications
(techpedia).

