
Criterion C - Development

Introduction

This product is a Java IDE program. It allows the user to enter and save an athletic roster by
inputting the various attributes of the roster and those of its players. A Java database is used to
store this information, and a Netbeans GUI, utilizing Java Swing components, such as combo
boxes and panes, creates an interface in which the user may access and enter data. A number
of algorithms will also search for and sort rosters or players, and calculate the deserved awards
for players at the push of a button.

Word Count: 92

Summary of Techniques Used

● Parameter Passing
● Inheritance through a hierarchy

○ Abstraction
○ Extends
○ Super and Subclasses

● Writing to a file
○ File Writer
○ Bufferedwriter

● Reading from a file
○ Tokens and Tokenizer
○ Checking to see if file is empty
○ Checking to see if file exists

● Try and Catch
● For Loop
● While Loop
● Simple and Compound Selection
● Bubble Sort
● GUI Tabs
● Parsing
● Casting
● GUI Display Table
● Arrays and ArrayLists

○ Nested ArrayLists
■ Adding
■ Clearing
■ Getting Elements

● Switch
● Instantiation of Classes
● JOptionPane Popups

● Modifiers and Accessors
● String Comparison Using ASCII Values

Word Count: 81

Structure of the Program

What: ​Inheritance is used to create a hierarchy, extending the superclass Player. The
Subclasses are the types of player, Varsity or JV, abstraction including attributes such as
gender, and IASAS participation. The Roster class has an attribute which is an ArrayList of
Players, and thus any Roster Object will have that ArrayList, as well as defining attributes such
as roster type and year. The Roster of Players is then stored in an ArrayList of Rosters, written
to and read from a specific file.

Why: ​Firstly, inheritance was used due to the necessities of the client. There had to be
an ability to distinguish between the different types of players. Here, OOP was extremely
beneficial, as inheritance and encapsulation meant that the attributes in the super class,
attributes naturally held by each type, would be passed (inherited) on, and could only be
modified via the methods provided publicly to the user. Abstraction also made certain that
should the code be reused, certain parameters had to be satisfied. The ability to create multiple
instances of the same object also proved to be a requirement in the development process, as
various algorithms made use of the same methods.

Storing the data as a Roster of Players inside of another ArrayList meant that each
roster could be treated as its own element/object, and therefore not only could players be sorted
to allow for more efficient searching, but so could the Rosters themselves.

Word Count: 239

Data Structures Used

● ArrayList
○ Done due to the fact that it is unknown how many elements must be in the Array

(To be determined by the user)
○ Efficient, allowing for a means of organizing Objects
➢ ArrayLists Used:

○ ArrayList of the Object Player (The Roster)
■ Example Attributes:

● Year
● Sport
● Season

● Files

○ Data had to be stored, available to be accessed at a later date. Therefore, a file
was required in order to write and save data, as well as read the data.

Word Count: 78

Main Unique Algorithms
The Main unique algorithm in this product is the sequence of the file reading and writing
methods:

Writing

● File created in a user public folder in the computer
● String tokenizer used to distinguish between elements (“:”)
● Ordering of writing to the file had to be kept track of, due to the storing of attributes of

each ArrayList
○ Each attribute of the roster added to the same string
○ Each attribute of the players added to a second string.
○ Boths string written to the file together, appending, rather than overwriting.

Reading

● Reading the file had to correspond with the order in which the attributes were written in
○ Bufferedreader, and a next token method used to retrieve each attribute

separately.
■ These were stored in an appropriate arrayList.

○ When writing each player, a value denoting the number of players in that roster
was also included as a separate attribute.

■ This value was read using the bufferedreader to know when the next
token was actually a new roster.

● While loop used to control this process.
● Method returns an ArrayList of the roster ArrayLists.

Method for writing to the file:

Method for reading from the file:

Word Count: 189

User Interface/GUI

● Combo Box
○ A large part of the GUI, due to its ease of use for the user, as the options are

already listed, and all the user has to do is click.
● Check Boxes

○ For simple yes or no questions in regards to attributes, in order to achieve
efficiency and user-friendliness.

● Labels
○ To indicate to the user which field is for which attribute

● Display Table
○ A spreadsheet in a display table used to display the various rosters. This was

used as it is organized and easy to read for the user.
● Tabs & Panes

○ Partitioning each function makes it clear which components do each task, and
where those components are located.

Word Count: 110

Software Tools Used

● Netbeans IDE
○ The Netbeans IDE is a popular programming environment used by professionals

around the world.
■ The reason it is most useful for me in this project is that it allows me to

create an easy to use interface for the user (a requirement for the user’s
needs), utilizing Java Swing components. The software also implements
encapsulation across various functions, such as supplying pre-coded
methods, constructors, and shortcuts, making the development process
much more efficient.

Word Count: 75

