
The two cases of the Fetch and Execute Cycle:

A. What is fetched is actually an address:

1. fetch (reference)

2. decode (and realize that what was fetched was an address)

2.1 fetch the data at the address which was just fetched

2.2 decode (this will now be data/instructions, rather than an address)

3. execute

4. store partial result (in CPU accumulator register)

(perform next fetch)

5. (eventually) store result (in RAM)

B. When what is fetched is data or instructions

1. fetch (data)

2. decode

3. execute

4. store partial result (in CPU accumulator register)

(perform next fetch)

5. (eventually) store result (in RAM)

Important Registers Used in the Fetch & Execute Cycle:

Accumulator Register - temporarily stores a value that is in the process of being calculated, one step at a time.
Instruction Register - holds the instructions, one at a time.
Memory Address Register - holds either:
 - the memory address of the data (”operand”) to be used by the instruction
 - the memory address to which result to be written (”stored”)
Program Counter Register - holds the next memory address in line to be fetched.

Example of 2 + 3 =

Step 1; in assember code: LOAD x

1. fetch

using memory bus

fetch what’s at AAA111

RAM

@AAA111 @AAA112 @AAA113 @AAA114...

123ABC

...@123ABC... using data bus

0100 1........
(the letters L O A D and
a reference to a place in
RAM holding the value 2)

CPU

Result in various registers:

Accumulator Reg. Instructional Reg. Mem. Address Reg. Program Counter Reg.
null LOAD 2 @AAA111

2. Decode.

3. Execute.

4. Store in Accumulator.

Result in various registers:

Accumulator Reg. Instructional Reg. Mem. Address Reg. Program Counter Reg.
2 null null @AAA112

using memory bus

fetch what’s at AAA112

RAM

@AAA111 @AAA112 @AAA113 @AAA114...
222CCC

using data bus

0100 0........
(the letters A D D and a
reference to a place in
RAM holding the value 3
Note the later is an address,
but carried on the data bus
as requested data.*)

CPU

Result in various registers:

Accumulator Reg. Instructional Reg. Mem. Address Reg. Program Counter Reg.
2 ADD 3 @AAA112

2. Decode.

3. Execute.

4. Store in Accumulator:

Result in various registers:

Accumulator Reg. Instructional Reg. Mem. Address Reg. Program Counter Reg.
5 null null @AAA113

1. Fetch

...@222CCC...

...@33344D...

...@123ABC...

...@222CCC...

...@33344D...

using memory bus

fetch what’s at AAA113

RAM

@AAA111 @AAA112 @AAA113 @AAA114...
33344D

using data bus

0101 0........
(the letters S T O and a
reference to a free place in
RAM that can hold an int:
How about @FEEFEE)

CPU

Result in various registers:

Accumulator Reg. Instructional Reg. Mem. Address Reg. Program Counter Reg.
5 STO @FEEFEE... @AAA114

2. Decode.

3. Execute.

4. Store in Accumulator - Nope, not this time: But Stored back to RAM (not shown) .

Result in various registers:

Accumulator Reg. Instructional Reg. Mem. Address Reg. Program Counter Reg.
null null null @AAA114

1. Fetch

...@123ABC...

...@222CCC...

...@33344D...

...@D2D2D2D2

...@D2D2D2D2

...@D2D2D2D2

0100 1100
0100 1111
0100 0001
0100 0100

0110 0010(x)

(2)

@F89789
(LOAD)

F89789

Step 2; in assembler code: ADD y

0100 0001
0100 0100
0100 0100

(y)

(ADD)
D2D2D2D2

0011 0011
(3)

@F89789

@F89789

0101 0011
0101 0100
0100 1111

(STO)

Step 3: in assembler code: STO

@FEEFEE...

@FEEFEE...

@FEEFEE...

Address Bus Versus Data Bus

Basically the address bus carries requests from the CPU to the RAM for information stored at various
specific memory addresses. It is (in fact will have to be) the physical width of the system architecture
- 32 wires wide, or 64 wires wide - so as to accommodate all the combinations of addresses being sent
at one time.

Meantime, regarding the data bus, most of the time it finds itself carrying back data from the RAM; that
data will be either in the form of instructions, or it will be data itself. And for objects, that “data” will
be references. But it’s still data, carried on the data bus, even though the data is an address. And the
data bus is two-way, since at times it will carry processed data back from the accumulator register to
be stored in RAM.

And remember there are two buses, internal and external. The internal bus is made up of both the
address and the data bus, and allows for transferral of addresses and data between the CPU and the
cache and RAM memory.

